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Ingredients of an EM Algorithm

* Incomplete data Y, that we actually measure
e Goal: maximize the incomplete data loglikelihood
(function of specific collected data)
s @) =1og p, (y;:9)
e Complete data Z, a hypothetical data set

» Tool: complete data loglikelihood (function of
complete data as a random variable)

l.4@) =log p,(z0)|,, =log p,(Z:q)
» Complete data space must be “larger” and
determine the incomplete data, i.e. there

must be a many-to-one mapping y=h(z)

The EM Recipe

Step 1: Decide on a complete data space
» Step 2: The expectation step

Q@ 19°) =Ell, |Y = y:g™]
 Step 3: The maximization step
q =argrgaxQ(q 1g°)
q3

« Start with afeasible nitial guessq®® then iterate

steps 2 and 3 (which can usually be combined)

What isthat Expectation?
Ell, Y = v:0%] = 0Pz (2] ;0% log p, (z0)dZ
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Tasty Aspects of EM Algorithms

* Incomplete dataloglikelihood is guaranteed to
increase with each EM iteration
* Must be careful; might converge to alocal
maxima which depends on the starting point

» Often, the estimates naturally stay in the feasible
space (i.e., nonnegativity constraints)

* In many problems, a candidate complete data
space naturally suggests itself

Example: Poisson Signal In
Additive Poisson Noise

y=s+n
s~ Poisson(q), n~ Poisson(l )
¢ Incomplete-dataloglikelihood is
Ls@=-@+1,)+yln@+l,)
* ML estimator can be found in closed form:
a(y)=max©,y-I,)
» Simple “toy” example to apply EM approach




Step 1: Choose the Complete Data

 Can often choose the complete datain
several different ways; try to choose to
make remaining steps easy

+ Different choices lead to different
algorithms; some will converge “faster”
than others.

» Here, take complete data to be z=(s,n);
suppose we could magically measure the
signal and noise counts separately!

» Complete data loglikelihood is:
lw @) =[-a+SIn@)]+[-1 ,+NIn(l )]

_ Step2: The E-Step
Q@;a™)=E[l, 1Y =y,q%]
=E[- @+ ,)+SIn@)+ NIn( ,) | v:q™]

=-(+1.)+E[S|y:q*]In@)
+E[N|y;q*]In(l ,)

« Often convenient to leave explicit
computation of conditional expectation until
the last minute

¢ Aswith loglikelihoods, we sometimes drop
terms which are constants w.r.t. g

Step 3: The M-Step
Q"™ =argmaxQ(d;q™)
q3
» Take derivative as usual
d Zol
5 QEia™) =-1
q
» Setting equal to zero yields
q"™ =E[S|y:q*]

* Now wejust have to compute that pesky
expectation. (That's usually the hardest part.)
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That Pesky Conditional Expectation
E[S|y:0%] = ¢pps(s| y:a*")ds
e Let'slook at the conditional density
Pys(Y15:0°)) ps(s:9°)
R (¥:9°7)
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That Pesky Expectation Con't

e Ah! Conditional density isjust binomial.
For OE st y,
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» Sothis particular EM agorithmiis:
qoId

™ =E[S|yq™] = y=gi—
q +l

n

A Quick Sanity Check
o Let'sseeif qur analytic formulafor the
maximizer,q =max(0,y- | ), isafixed
point for the EM iteration

« Fory>Il,, AneNzyAdc}ld
q0|d+|n
N
] o=yt
y-1Ts yy_|n+|n
y_ln:y_ln

» For y<l| ,,immediately get 0=0
e So everything is good




Back In Bayesianland
« EM agorithm also good for MAP estimation; just add the

logprior to the Q-function
Qo (@:9*) = Ell, |Y = y;q**] +1og p(@)
q™ =argn;apr(q;q°"’)
o

« Consider previous example, with an exponential prior
with mean 1/a

Q:(@:d"") =-q +E[S|y:q]In@) -
Q@:a™) __,, ESly.a™l .
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