Presentation Supplement: Proofs of the Selected Theorems

Volkan Cevher Georgia Institute of Technology Atlanta, GA cevher@ieee.org

I. THE FACTORIZATION THEOREM

The factorization theorem is introduced at Slide 15. The proof of this theorem is done for the case in which Γ is discrete and is due to [1]. A general proof can be found in [2].

Let $p_{\theta}(\mathbf{y}|t)$ denote the density of \mathbf{y} given $t = T(\mathbf{y})$. By the Bayes formula one have

$$p_{\theta}(\mathbf{y}|t) \triangleq P_{\theta}(\mathbf{Y} = \mathbf{y}|T(\mathbf{Y}) = t)$$
$$= \frac{P_{\theta}(T(\mathbf{Y}) = t|\mathbf{Y} = \mathbf{y})P_{\theta}(\mathbf{Y} = \mathbf{y})}{P_{\theta}(T(\mathbf{Y}) = t)}$$
(I.1)

Since $P_{\theta}(T(\mathbf{Y}) = t | \mathbf{Y} = \mathbf{y}) = 1$ if $T(\mathbf{Y}) = t$ and 0 if $T(\mathbf{Y}) \neq t$, and $P_{\theta}(\mathbf{Y} = \mathbf{y}) = p_{\theta}(\mathbf{y})$, Eq.I.1 becomes

$$p_{\theta}(\mathbf{y}|t) = \begin{cases} p_{\theta}(\mathbf{y})/P_{\theta}(T(\mathbf{Y}) = t) & \text{if } T(\mathbf{y}) = t, \\ 0 & \text{otherwise.} \end{cases}$$
(I.2)

Now $P_{\theta}(T(\mathbf{Y}) = t) = \sum_{\mathbf{y}|T(\mathbf{Y})=t} p_{\theta}(\mathbf{y})$. To prove the if Hence, if it can be shown that $E_{\theta}\{[\tilde{g}[T(\mathbf{Y})]]^2\}$ part of the theorem observe the following $E_{\theta}\{[\hat{g}(\mathbf{Y})]^2\}$, the proof is complete.

$$P_{\theta}(T(\mathbf{Y}) = t) = \sum_{\mathbf{y}|T(\mathbf{Y})=t} g_{\theta}[T(\mathbf{y})]h(\mathbf{y})$$

= $g_{\theta}(t) \sum_{\mathbf{y}|T(\mathbf{Y})=t} h(\mathbf{y})$ (I.3)

in addition one also have $p_{\theta}(\mathbf{y}) = g_{\theta}[T(\mathbf{y})]h(\mathbf{y}) =$ $g_{\theta}(t)h(\mathbf{y})$. From Eq. I.2 one then have

$$p_{\theta}(\mathbf{y}|t) = \begin{cases} h(\mathbf{y}) / \sum_{\mathbf{y}|T(\mathbf{Y})=t} h(\mathbf{y}) & \text{if } T(\mathbf{y}) = t, \\ 0 & \text{otherwise.} \end{cases}$$
(I.4)

Since the right hand side of Eq. I.4 does not depend on θ , T is a sufficient statistic for the parameter set $\theta \in \Lambda$.

To prove the only if statement in the theorem, let T be any sufficient statistic for θ . From Eq. I.2 one can write

$$p_{\theta}(\mathbf{y}) = p_{\theta}(\mathbf{y}|T(\mathbf{y}))P_{\theta}[T(\mathbf{Y}) = T(\mathbf{y})]$$
(I.5)

Since T is sufficient for θ , $p_{\theta}(\mathbf{y}|T(\mathbf{y}))$ depends only on \mathbf{y} and not on θ . On defining $h(\mathbf{y}) \triangleq p_{\theta}(\mathbf{y}|T(\mathbf{y}))$ and $g_{\theta}[T(\mathbf{y})] \triangleq$ $P_{\theta}[T(\mathbf{Y}) = T(\mathbf{y})]$, one can see that Eq. I.5 implies the factorization theorem. Hence, the proof is complete.

II. THE RAO-BLACKWELL THEOREM

Slide 17 presents the Rao-Blackwell theorem, which is very useful for minimum variance unbiased estimators. The theorem and its proof can also be found in [1].

To prove that $\tilde{g}[T(\mathbf{Y})]$ is unbiased, take the expectation

$$E_{\theta}\{\tilde{g}[T(\mathbf{Y})]\} = E_{\theta}\{E_{\theta}\{\hat{g}(\mathbf{Y})|T(\mathbf{Y})\}\}$$

$$\Rightarrow \tilde{g}[T(\mathbf{Y})] = E_{\theta}\{\hat{g}(\mathbf{Y})\} = g(\theta)$$
 (II.1)

First note that the expectation defining \tilde{g} does not depend on θ due to the sufficiency of T. Secondly, the second equality can be obtained by using the fact that $E\{E\{X|Z\}\} = E\{X\}$ and the unbiasedness of \hat{g} .

In order to see that $Var_{\theta}(\tilde{g}[T(\mathbf{Y})]) \leq Var_{\theta}(\hat{g}(\mathbf{Y}))$, note the following

$$Var_{\theta}(\tilde{g}[T(\mathbf{Y})]) = E_{\theta}\{[\tilde{g}[T(\mathbf{Y})]]^2\} - g^2(\theta)$$

$$Var_{\theta}(\hat{g}(\mathbf{Y})) = E_{\theta}\{[\hat{g}(\mathbf{Y})]^2\} - g^2(\theta)$$
(II.2)

 \leq

$$E_{\theta}\{[\tilde{g}[T(\mathbf{Y})]]^{2}\} = E_{\theta}\{[E_{\theta}\{\hat{g}(\mathbf{Y})|T(\mathbf{Y})\}]^{2}\}$$
$$\leq E_{\theta}\{E_{\theta}\{[\hat{g}(\mathbf{Y})]^{2}|T(\mathbf{Y})\}\} \qquad (\text{II.3})$$
$$= E_{\theta}\{[\hat{g}(\mathbf{Y})]^{2}\},$$

The second equality follows from Jensen's inequality ¹ and the final equality follows from iterated expectation operations. The equality in Jensen's inequality is satisfied if and only if $P_{\theta}[\hat{g}(\mathbf{Y}) = E_{\theta}\{\hat{g}(\mathbf{Y})|T(\mathbf{Y})\}|T(\mathbf{Y})| = 1$, and using the definition of \tilde{g} it is easy to see that this condition is equivalent to $P_{\theta}[\hat{q}(\mathbf{Y}) = \tilde{q}[T(\mathbf{Y})] = 1$. This completes the proof of the Rao-Blackwell theorem.

III. CRAMER-RAO BOUND

The Cramer-Rao bound establishes a lower bound on the error covariance matrix for any unbiased estimator $\hat{\theta}$ for a parameter θ and was introduced in Slide 39. To set up the Cramer-Rao bound, we need to define a function called the score function, interpret it, and establish its statistical properties. The proof here follows the one in chapter 6 of [3].

The score function is defined to be the gradient of the log-likelihood function:

¹Jensen's Inequality: For any random variable X and convex function C, $E\{C(X)\} \ge C(E\{X\})$ with equality if and only if $P(X = E\{X\}) = 1$ when C is strictly convex.

$$s(\theta, \mathbf{y}) = \frac{\partial}{\partial \theta} L(\theta, \mathbf{y}) = \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y})$$
(III.1)

When the realization \mathbf{y} is replaced by the random variable **Y**, then the log-likelihood and score functions become random variables:

$$s(\theta, \mathbf{Y}) = \frac{\partial}{\partial \theta} L(\theta, \mathbf{Y}) = \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{Y})$$
(III.2)

The score function scores values of θ as the random vector **Y** assumes values from the distribution $p_{\theta}(\mathbf{y})$. Scores are good scores and scores different from zero are bad scores. The score function has zero mean:

$$E\{s(\theta, \mathbf{y})\} = E\{\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{Y})\}$$
$$= \int d\mathbf{y} p_{\theta}(\mathbf{y}) \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y})$$
$$= \int d\mathbf{y} \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y}) = \frac{\partial}{\partial \theta} \int d\mathbf{y} p_{\theta}(\mathbf{y}) = \mathbf{0}$$
(III.3)

The covariance matrix of the score function $s(\theta, \mathbf{Y})$ is called the Fisher information matrix and is denoted by $\mathbf{J}(\theta)$:

$$\mathbf{J}(\theta) = E\{s(\theta, \mathbf{Y})s^{T}(\theta, \mathbf{Y})\} = E\{\frac{\partial}{\partial\theta}\log p_{\theta}(\mathbf{Y})(\frac{\partial}{\partial\theta}\log p_{\theta}(\mathbf{Y}))^{T}\}.$$
Form the following $2m \times 1$ vec
$$\begin{bmatrix} \hat{\theta} - \theta \\ s(\theta, \mathbf{Y}) \end{bmatrix}$$

This result for the Fisher information matrix can be cast in a different, but equivalent, form by noting that the function $\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y})$ may be rewritten as

$$\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y}) = \frac{1}{p_{\theta}(\mathbf{y})} \frac{\partial}{\partial \theta} p_{\theta}(\mathbf{y}).$$
(III.5)

The second gradient of $\log p_{\theta}(\mathbf{y})$ may then be rewritten as

$$\frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y}) \right)^{T} = \frac{\frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} p_{\theta}(\mathbf{y}) \right)^{T}}{p_{\theta}(\mathbf{y})} - \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y}) \left(\frac{\partial}{\partial \theta} p_{\theta}(\mathbf{y}) \right)^{T} dia$$
(III.6)

The expectation of the first term on the right-hand side is zero, so

$$E\{\frac{\partial}{\partial\theta}(\frac{\partial}{\partial\theta}\log p_{\theta}(\mathbf{Y}))^{T}\} = -E\{\frac{\partial}{\partial\theta}\log p_{\theta}(\mathbf{Y})(\frac{\partial}{\partial\theta}p_{\theta}(\mathbf{Y}))^{T}\}.$$
(III.7)

This identity produces formula for the Fisher information matrix:

$$\mathbf{J}(\theta) = -E\{\frac{\partial}{\partial\theta}(\frac{\partial}{\partial\theta}\log p_{\theta}(\mathbf{Y}))^{T}\}.$$
 (III.8)

These results are summarized by recording the i, j element of the Fisher information matrix:

$$\begin{aligned} [\mathbf{J}(\theta)]_{i,j} &= E\{\frac{\partial}{\partial \theta_i} \log p_{\theta}(\mathbf{Y}) (\frac{\partial}{\partial \theta_j} \log p_{\theta}(\mathbf{Y}))^T\} \\ &= E\{\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p_{\theta}(\mathbf{Y})\} \end{aligned}$$
(III.9)

There is one more property we will need. The crosscovariance between the score function and the error of any unbiased estimator $\hat{\theta}$ is identity:

$$E\{s(\theta, \mathbf{Y})[\hat{\theta} - \theta]^T\} = \mathbf{I}$$
(III.10)

To establish this remarkable property, we note that the unbiasedness of $\hat{\theta}$ implies $E\{[\hat{\theta} - \hat{\theta}]^T\} = \mathbf{0}^T$. This may be written as $\int d\mathbf{y} p_{\theta}(\mathbf{y})[\hat{\theta} - \theta]^T = \mathbf{0}^T$. Taking the gradient with respect to θ , one can obtain:

$$\int d\mathbf{y} \frac{\partial}{\partial \theta} p_{\theta}(\mathbf{y}) [\hat{\theta} - \theta]^{T} - \int d\mathbf{y} p_{\theta}(\mathbf{y}) \mathbf{I} = \mathbf{0}$$
$$\int d\mathbf{y} p_{\theta}(\mathbf{y}) \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{y}) [\hat{\theta} - \theta]^{T} = \mathbf{I}$$
(III.11)
$$E\{s(\theta, \mathbf{Y})[\hat{\theta} - \theta]^{T}\} = \mathbf{I}.$$

Then the error covariance matrix for $\hat{\theta}$ is bounded as follows:

$$\mathbf{C} = E\{[\hat{\theta} - \theta][\hat{\theta} - \theta]^T\} \ge \mathbf{J}^{-1}, \qquad (\text{III.12})$$

provided that \mathbf{J} is positive definite. That is, the matrix $\mathbf{C} - \mathbf{J}^{-1}$ is nonnegative definite, as is the matrix $\mathbf{J} - \mathbf{C}^{-1}$.

$$\mathbf{Y} \begin{pmatrix} \frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{Y}) \end{pmatrix}^{T} \\ \vdots \\ \text{(III.4)} \\ \begin{bmatrix} \hat{\theta} - \theta \\ s(\theta, \mathbf{Y}) \end{bmatrix}$$
(III.13)

This vector has zero mean. Its covariance matrix is given by

$$\mathbf{Q} = E\{ \begin{bmatrix} \theta - \theta \\ s(\theta, \mathbf{Y}) \end{bmatrix} [(\hat{\theta} - \theta)^T s^T(\theta, \mathbf{Y})] \}$$
$$= \begin{bmatrix} \mathbf{C} & \mathbf{I} \\ \mathbf{I} & \mathbf{J} \end{bmatrix}$$
(III.14)

The nonnegative definite covariance matrix \mathbf{Q} may be agonalized as follows: Ι 0] $\begin{bmatrix} \mathbf{C} - \mathbf{J}^{-1} & \mathbf{0} \end{bmatrix}$ $-\mathbf{J}^{-1}] \begin{bmatrix} \mathbf{C} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \end{array}$ Ι 0

$$\mathbf{I} \quad \mathbf{I} \quad \mathbf{J} \quad \mathbf{I} \quad \mathbf{J} \quad \mathbf{J} \quad \mathbf{J} \quad \mathbf{J} \quad \mathbf{I} \quad \mathbf{J} = \begin{bmatrix} \mathbf{0} & \mathbf{J} \\ \mathbf{I} \end{bmatrix}$$
(III.15)

Thus, the covariance matrix \mathbf{Q} is similar to the matrix on the right-hand side. Therefore, $\mathbf{C} - \mathbf{J}^{-1}$ is nonnegative definite, meaning $\mathbf{C} \geq \mathbf{J}^{-1}$ or $\mathbf{J} \geq \mathbf{C}^{-1}$. The *i*, *i* element of **C** is the mean-squared error of the estimator of θ_i :

$$C_{i,i} = E\{(\hat{\theta}_i - \theta_i)^2\} \ge (\mathbf{J}^{-1})_{i,i}.$$
 (III.16)

So, the i, i element of the inverse of the Fisher information matrix lower bounds the mean-squared error of any unbiased estimator of θ_i .

References

- Poor, H. V. (1994), An Introduction to Signal Detection and
- Estimation (Dowen& Culver, Inc.) [2]Lehmann, E. L. (1986), Testing Statistical Hypotheses (Wiley: New York)

[1]

Scharf, L. S. (1991), Statistical Signal Processing (Addison-[3] Wesley Publishing Company, Inc.)