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I. The Factorization Theorem

The factorization theorem is introduced at Slide 15. The
proof of this theorem is done for the case in which Γ is dis-
crete and is due to [1]. A general proof can be found in [2].

Let pθ(y|t) denote the density of y given t = T (y). By
the Bayes formula one have

pθ(y|t) , Pθ(Y = y|T (Y) = t)

=
Pθ(T (Y) = t|Y = y)Pθ(Y = y)

Pθ(T (Y) = t)
(I.1)

Since Pθ(T (Y) = t|Y = y) = 1 if T (Y) = t and 0 if
T (Y) 6= t, and Pθ(Y = y) = pθ(y), Eq.I.1 becomes

pθ(y|t) =

{
pθ(y)/Pθ(T (Y) = t) if T (y) = t,

0 otherwise.
(I.2)

Now Pθ(T (Y) = t) =
∑

y|T (Y)=t pθ(y). To prove the if
part of the theorem observe the following

Pθ(T (Y) = t) =
∑

y|T (Y)=t

gθ[T (y)]h(y)

= gθ(t)
∑

y|T (Y)=t

h(y)
(I.3)

in addition one also have pθ(y) = gθ[T (y)]h(y) =
gθ(t)h(y). From Eq. I.2 one then have

pθ(y|t) =

{
h(y)/

∑
y|T (Y)=t h(y) if T (y) = t,

0 otherwise.
(I.4)

Since the right hand side of Eq. I.4 does not depend on θ,
T is a sufficient statistic for the parameter set θ ∈ Λ.

To prove the only if statement in the theorem, let T be
any sufficient statistic for θ. From Eq. I.2 one can write

pθ(y) = pθ(y|T (y))Pθ[T (Y) = T (y)] (I.5)

Since T is sufficient for θ, pθ(y|T (y)) depends only on y and
not on θ. On defining h(y) , pθ(y|T (y)) and gθ[T (y)] ,
Pθ[T (Y) = T (y)], one can see that Eq. I.5 implies the
factorization theorem. Hence, the proof is complete.

II. The Rao-Blackwell Theorem

Slide 17 presents the Rao-Blackwell theorem, which is
very useful for minimum variance unbiased estimators. The

theorem and its proof can also be found in [1].

To prove that g̃[T (Y)] is unbiased, take the expectation

Eθ{g̃[T (Y)]} = Eθ{Eθ{ĝ(Y)|T (Y)}}
⇒ g̃[T (Y)] = Eθ{ĝ(Y)} = g(θ)

(II.1)

First note that the expextation defining g̃ does not de-
pend on θ due to the sufficiency of T . Secondly, the
second equality can be obtained by using the fact that
E{E{X|Z}} = E{X} and the unbiasedness of ĝ.

In order to see that V arθ(g̃[T (Y)]) ≤ V arθ(ĝ(Y)), note
the following

V arθ(g̃[T (Y)]) = Eθ{[g̃[T (Y)]]2} − g2(θ)

V arθ(ĝ(Y)) = Eθ{[ĝ(Y)]2} − g2(θ)
(II.2)

Hence, if it can be shown that Eθ{[g̃[T (Y)]]2} ≤
Eθ{[ĝ(Y)]2}, the proof is complete.

Eθ{[g̃[T (Y)]]2} = Eθ{[Eθ{ĝ(Y)|T (Y)}]2}
≤ Eθ{Eθ{[ĝ(Y)]2|T (Y)}}
= Eθ{[ĝ(Y)]2},

(II.3)

The second equality follows from Jensen’s inequality 1 and
the final equality follows from iterated expectation opera-
tions. The equality in Jensen’s inequality is satisfied if and
only if Pθ[ĝ(Y) = Eθ{ĝ(Y)|T (Y)}|T (Y)] = 1, and using
the definition of g̃ it is easy to see that this condition is
equivalent to Pθ[ĝ(Y) = g̃[T (Y)]] = 1. This completes the
proof of the Rao-Blackwell theorem.

III. Cramer-Rao Bound

The Cramer-Rao bound establishes a lower bound on the
error covariance matrix for any unbiased estimator θ̂ for a
parameter θ and was introduced in Slide 39. To set up
the Cramer-Rao bound, we need to define a function called
the score function, interpret it, and establish its statistical
properties. The proof here follows the one in chapter 6 of
[3].

The score function is defined to be the gradient of the
log-likelihood function:

1Jensen’s Inequality: For any random variable X and convex func-
tion C, E{C(X)} ≥ C(E{X}) with equality if and only if P (X =
E{X}) = 1 when C is strictly convex.
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s(θ,y) =
∂

∂θ
L(θ,y) =

∂

∂θ
log pθ(y) (III.1)

When the realization y is replaced by the random vari-
able Y, then the log-likelihood and score functions become
random variables:

s(θ,Y) =
∂

∂θ
L(θ,Y) =

∂

∂θ
log pθ(Y) (III.2)

The score function scores values of θ as the random vec-
tor Y assumes values from the distribution pθ(y). Scores
are good scores and scores different from zero are bad
scores. The score function has zero mean:

E{s(θ,y)} = E{ ∂

∂θ
log pθ(Y)}

=
∫

dypθ(y)
∂

∂θ
log pθ(y)

=
∫

dy
∂

∂θ
log pθ(y) =

∂

∂θ

∫
dypθ(y) = 0

(III.3)
The covariance matrix of the score function s(θ,Y) is called
the Fisher information matrix and is denoted by J(θ):

J(θ) = E{s(θ,Y)sT (θ,Y)} = E{ ∂

∂θ
log pθ(Y)(

∂

∂θ
log pθ(Y))T }.

(III.4)

This result for the Fisher information matrix can be cast in
a different, but equivalent, form by noting that the function
∂
∂θ log pθ(y) may be rewritten as

∂

∂θ
log pθ(y) =

1
pθ(y)

∂

∂θ
pθ(y). (III.5)

The second gradient of log pθ(y) may then be rewritten as

∂

∂θ
(

∂

∂θ
log pθ(y))T =

∂
∂θ ( ∂

∂θpθ(y))T

pθ(y)
− ∂

∂θ
log pθ(y)(

∂

∂θ
pθ(y))T .

(III.6)

The expectation of the first term on the right-hand side is
zero, so

E{ ∂

∂θ
(

∂

∂θ
log pθ(Y))T } = −E{ ∂

∂θ
log pθ(Y)(

∂

∂θ
pθ(Y))T }.

(III.7)

This identity produces formula for the Fisher information
matrix:

J(θ) = −E{ ∂

∂θ
(

∂

∂θ
log pθ(Y))T }. (III.8)

These results are summarized by recording the i, j element
of the Fisher information matrix:

[J(θ)]i,j = E{ ∂

∂θi
log pθ(Y)(

∂

∂θj
log pθ(Y))T }

= E{ ∂2

∂θi∂θj
log pθ(Y)}

(III.9)

There is one more property we will need. The cross-
covariance between the score function and the error of any
unbiased estimator θ̂ is identity:

E{s(θ,Y)[θ̂ − θ]T } = I (III.10)

To establish this remarkable property, we note that the
unbiasedness of θ̂ implies E{[θ̂ − θ]T } = 0T . This may be
written as

∫
dypθ(y)[θ̂ − θ]T = 0T . Taking the gradient

with respect to θ, one can obtain:∫
dy

∂

∂θ
pθ(y)[θ̂ − θ]T −

∫
dypθ(y)I = 0∫

dypθ(y)
∂

∂θ
log pθ(y)[θ̂ − θ]T = I

E{s(θ,Y)[θ̂ − θ]T } = I.

(III.11)

Then the error covariance matrix for θ̂ is bounded as fol-
lows:

C = E{[θ̂ − θ][θ̂ − θ]T } ≥ J−1, (III.12)

provided that J is positive definite. That is, the matrix
C− J−1 is nonnegative definite, as is the matrix J−C−1.

Form the following 2m× 1 vector:[
θ̂ − θ

s(θ,Y)

]
(III.13)

This vector has zero mean. Its covariance matrix is given
by

Q = E{
[

θ̂ − θ
s(θ,Y)

]
[(θ̂ − θ)T sT (θ,Y)]}

=
[

C I
I J

] (III.14)

The nonnegative definite covariance matrix Q may be
diagonalized as follows:[

I −J−1

0 I

] [
C I
I J

] [
I 0

−J−1 I

]
=

[
C− J−1 0

0 J

]
(III.15)

Thus, the covariance matrix Q is similar to the matrix on
the right-hand side. Therefore, C − J−1 is nonnegative
definite, meaning C ≥ J−1 or J ≥ C−1. The i, i element
of C is the mean-squared error of the estimator of θi:

Ci,i = E{(θ̂i − θi)2} ≥ (J−1)i,i. (III.16)

So, the i, i element of the inverse of the Fisher informa-
tion matrix lower bounds the mean-squared error of any
unbiased estimator of θi.
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