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I. THE FACTORIZATION THEOREM

The factorization theorem is introduced at Slide 15. The
proof of this theorem is done for the case in which T is dis-
crete and is due to [1]. A general proof can be found in [2].

Let pg(yl|t) denote the density of y given t = T'(y). By
the Bayes formula one have

po(ylt) £ Po(Y = y|T(Y) = 1)
_ B(TXY) =Y =y)P(Y =y)
Py(T(Y) =t)
Since Py(T(Y) = t]Y =y) = 1if T(Y) = ¢ and 0 if
T(Y) #t, and Py(Y =y) = po(y), Eq.I.1 becomes

po(ylt) = {pe(Y)/Pe(T(Y) =t ifT(y) =t

(L1)

. (12)
0 otherwise.

Now Pp(T(Y) = t) = >y p(v)=Po(y). To prove the if
part of the theorem observe the following

> 9l TWh(y)
YIT(Y)=t

=go(t) > hly)

y|IT(Y)=t

(1.3)

in addition one also have py(y) = g¢o[T(y)|h(y) =

go(t)h(y). From Eq. 1.2 one then have

h(y)/ Xgirny=e hy) i T(y) =t,

) (1.4)
0 otherwise.

po(ylt) = {

Since the right hand side of Eq. 1.4 does not depend on 6,
T is a sufficient statistic for the parameter set § € A.

To prove the only if statement in the theorem, let T be
any sufficient statistic for . From Eq. 1.2 one can write

po(y) = po(y|T(y)) Po[T(Y) =T(y)] (L.5)

Since T is sufficient for 0, pp(y|T (y)) depends only on y and
not on . On defining h(y) £ py(y|T(y)) and go[T(y)] =
Py[T(Y) = T(y)], one can see that Eq. 15 implies the
factorization theorem. Hence, the proof is complete.

II. THE RAO-BLACKWELL THEOREM

Slide 17 presents the Rao-Blackwell theorem, which is
very useful for minimum variance unbiased estimators. The

theorem and its proof can also be found in [1].

To prove that g[T(Y)] is unbiased, take the expectation

Eo{g[T(Y)]} = Eo{Ee{9(Y)IT(Y)}}
= g[T(Y)] = Eo{9(Y)} = 9(0)

First note that the expextation defining g does not de-
pend on 6 due to the sufficiency of T. Secondly, the
second equality can be obtained by using the fact that
E{E{X|Z}} = E{X} and the unbiasedness of §.

(IL.1)

In order to see that Varg(g[T(Y)]) < Vare(g(Y)), note
the following

Varg(9[T(Y))) = Eo{[g[T(Y)]]*} — g°(0)

Varg(3(Y)) = Ee{[g(Y)]*} — g°(0)

Hence, if it can be shown that Ep{[g[T(Y)]]*} <
Eg{[9(Y)]?}, the proof is complete.

(I1.2)

Eo{[a[T(Y)]*} = Eo{[Eo{g(Y)|T(Y)}]*}
< Eo{Bo{[9(Y)?IT(Y)}}
= Ep{[g(Y)]*},

The second equality follows from Jensen’s inequality ! and
the final equality follows from iterated expectation opera-
tions. The equality in Jensen’s inequality is satisfied if and
only if Py[g(Y) = Eg{g(Y)|IT(Y)HT(Y)] = 1, and using
the definition of g it is easy to see that this condition is
equivalent to Py[g(Y) = g[T(Y)]] = 1. This completes the
proof of the Rao-Blackwell theorem.

(11.3)

III. CRAMER-RAO BOUND

The Cramer-Rao bound establishes a lower bound on the
error covariance matrix for any unbiased estimator 6 for a
parameter # and was introduced in Slide 39. To set up
the Cramer-Rao bound, we need to define a function called
the score function, interpret it, and establish its statistical
properties. The proof here follows the one in chapter 6 of

[3].

The score function is defined to be the gradient of the
log-likelihood function:

1 Jensen’s Inequality: For any random variable X and convex func-
tion C, E{C(X)} > C(FE{X}) with equality if and only if P(X =
E{X}) =1 when C is strictly convex.
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0

s(0,y) = @Lw y)=

When the realization y is replaced by the random vari-
able Y, then the log-likelihood and score functions become
random variables:

0
59 108po(y) (IIL.1)

0

B)
%L(&Y) = —logps(Y)

s(0,Y) = 50

(I11.2)

The score function scores values of 6 as the random vec-
tor Y assumes values from the distribution py(y). Scores
are good scores and scores different from zero are bad
scores. The score function has zero mean:

B{s(0.y)} = B{ 5 logps(Y))
:/dype( );)Hlogpe(w

0
/ dy =5 logpe =% / dype(y) =0
(I11.3)

The covariance matrix of the score function s(f,Y) is called
the Fisher information matriz and is denoted by J(6):
J(0) = E{s(0,Y)s

T(0,Y)) = Bl ogm(¥) (3

(I11.4)

This result for the Fisher information matrix can be cast in
a different, but equivalent, form by noting that the function
2 log py(y) may be rewritten as

0

Jagto) ()

8 (y) = 1
b
26 5P = )
The second gradient of log py(y) may then be rewritten as

T @(mPG(Y))T 0

(D togpay))” = 22D B g0 () (2 pi ()"

po(y)
(I11.6)

The expectation of the first term on the right-hand side is
ZEro, SO

B2

aa ~B{ 4 Yog s (Y) (p(¥))).

(- 1ogpo(Y))}y = —E{
(I1L.7)

This identity produces formula for the Fisher information
matrix:

10)= B (D rogp(v)T).

These results are summarized by recording the 7, j element
of the Fisher information matrix:

36), = E (¥) (o Tog pa(Y))")
52 ! (I11.9)
= E{m logpy(Y)}

0
06;

log py(Y))

There is one more property we will need. The cross-
covariance between the score function and the error of any
unbiased estimator 6 is identity:

E{s(0,Y)f -0} =1 (I11.10)

To establish this remarkable property, we note that the
unbiasedness of § implies E{[f — 6]7} = 07. This may be
written as fdypg(y)[é —0)7 = 0T. Taking the gradient
with respect to 6, one can obtain:

/dy%pe(y)[é — 0" — /dype(Y)I =0

/dYIUe( );elogpg( - 67 =1 (II1.11)

E{s(0,Y)[0 — 0]} =
Then the error covariance matrix for 8 is bounded as fol-

lows:

C=E{[l-0]0—-0T}>I, (I11.12)

provided that J is positive definite. That is, the matrix
C — J~! is nonnegative definite, as is the matrix J — C~1.

}Form the following 2m x 1 vector:

o]

This vector has zero mean. Its covariance matrix is given
by

(IT1.13)

Q- 5(| (g, |[10-0"" 0y -
Ith

The nonnegative definite covariance matrix Q may be
dlagonahzed as follows:
I -J! C I I o] [C-J1! o
o Tl v
(IT1.15)

Thus, the covariance matrix Q is similar to the matrix on
the right-hand side. Therefore, C — J~! is nonnegative
definite, meaning C > JlorJ > C™! The i,i element
of C is the mean-squared error of the estimator of 6;:

Cii=E{(0; —0.)*} > (T )i (I11.16)
So, the 4,7 element of the inverse of the Fisher informa-
tion matrix lower bounds the mean-squared error of any
unbiased estimator of 6;.

REFERENCES

[1] Poor, H. V. (1994), An Introduction to Signal Detection and
Estimation (Dowen& Culver, Inc.)

[2] Lehmann, E. L. (1986), Testing Statistical Hypotheses (Wiley:
New York)

[3] Scharf, L. S. (1991), Statistical Signal Processing (Addison-
Wesley Publishing Company, Inc.)



