Greetings from Georgia Tech

Interconnect and Packaging Center (IPC)

Madhavan Swaminathan, Director
Muhannad Bakir, Associate Director
School of Electrical and Computer Engineering
Outline

 A brief introduction of IPC

 Research Presentations – A Snap Shot
  Packaging – Madhavan Swaminathan
  CAD, Circuits, Architecture – Sungkyu Lim
  Devices, Circuits, Interconnects – Muhannad Bakir
Established in 2009 as an SRC Center of Excellence

Multi-university center with research focus on 3D Technologies, leading to 3D IC technology innovation, exploration, and discoveries

Started with Nine faculty and several graduate students

Paul Kohl (GT), Scott List (SRC) – Started the program

Jon Candelaria (SRC) – Served as program director
Research Presentations
Packaging

- Paul Kohl, ChBE
- Suresh Sitaraman, ME
- Rao Tummala, ECE/MSE
- Madhavan Swaminathan, ECE
New Polymeric Materials for Interconnect and Packaging

First chemically amplified, positive tone, aqueous developed permanent dielectric for electronic packages. Sensitive is 10-20x higher than non-chemically amplified.

Family of sacrificial polymers for (i) ultra low-k insulation on PWB and (ii) low-cost MEMS packaging using lead-frame and epoxy overmolded packages.

Demonstrated that air-isolated interconnect on PWB has 4x higher bandwidth density at optimum energy/bit.
Battery Integration into ICs and Packages

Previous SRC Projects Include:

- IFC (Focus Center): (i) Ultra-low dielectric constant materials for packages, (ii) integrated power sources in ICs and Packages, (iii) waste heat recovery and reuse via new absorption cycle refrigeration
- All copper chip-to-substrate attachment replacing solder attachment
- Improvements in polyimide adhesion and surface roughness for interconnect

Integrated, thin-film battery-including new designs for low-voltage, high energy density future wireless devices

Self powered sensors- vanish on command (DARPA)- decomposable PWB, case and battery
3D Microsystems and Through-Silicon Vias

- Developed validated models to predict failures in TSVs
- Developed design guidelines for next-generation TSVs
- Sensors to measure strains near TSVs

Suresh K. Sitaraman, ME

- Developed validated models to predict failures in TSVs
- Developed design guidelines for next-generation TSVs
- Sensors to measure strains near TSVs

Cu/SiO2 Interfacial Cracking and SiO2 Cracking

Synchrotron XRD measurements and model predictions

Nano- and Micro-Scale Strain Sensors
On-Chip Interfacial Delamination

Suresh K. Sitaraman
ME

Example BEOL Stack

- Developed cohesive zone models (CZM) to predict the onset and propagation of delamination
- Developed innovative approach to extract CZM parameters from experimental tests
- Demonstrated application to on-chip and off-chip interfacial delamination
- Developed pathways to mitigate interfacial failures
Simultaneous Stack-Bonding and Underfill Encapsulation by Self Patterning

Objective:
High-reliability and high-throughput assembly processes for 3D IC stacks with ultra-thin interconnections, using simultaneous assembly and underfilling by self-patterning

Rao Tummala, ECE/MSE

Current process:
Simultaneous assembly and underfilling

Fillers trapped !!

SRC project focus:
Simultaneous assembly and underfilling with self-patterning

Task 1: Create superhydrophobic surface for underfill self-patterning

Task 2: UF formulation for thermocompression bonding (TCB)

Task 3: TCB process and reliability characterization

No filler entrapment with self-patterning
Key Accomplishments

Task 1: Demonstrated superhydrophobic surface for underfill self-patterning

- Self-patterning of silica-filled underfill on copper pads by superhydrophobic treatment
- SEM cross-sections illustrate lower filler entrapment for improved reliability;

Task 2: UF formulation for TCB:
- FEM modeling for optimal underfill properties
- Developed self-fluxed underfill with various filler contents

Task 3: TCB process and reliability characterization

- Performed assembly, reliability characterization and failure analysis correlating failures to filler entrapment;
Electromagnetic modeling of chip and package with multiple length scales
- Focus on Frequency and Time Domain Methods
- New techniques for modeling TSV in silicon interposers
- Domain decomposition based fine difference methods
- Method of moments with specialized basis functions
- Extension to include surface roughness for advanced interconnects such as SIW (w/ Intel)
- Extension to include multiphysics
Recent Accomplishments

Madhavan Swaminathan
ECE

First demonstration of Laguerre-FDTD with Domain Decomposition (IEEE CPMT 2015)

- Modeling of Silicon Interposer
- Specialized basis functions for TSVs
- Domain decomposition
- Finite Difference Frequency Domain

IEEE EMC 2015
3D IC: Where Are We?

<table>
<thead>
<tr>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>package-on-package</td>
<td>interposer</td>
<td>on-chip TSV</td>
<td>monolithic 3D</td>
</tr>
<tr>
<td>Package-oriented (OSAT)</td>
<td></td>
<td>Chip-oriented (foundries)</td>
<td></td>
</tr>
<tr>
<td>Mobile commercialized</td>
<td>FPGA, GPU commercialized</td>
<td>HMC & HBM commercialized</td>
<td>V-NAND commercialized</td>
</tr>
<tr>
<td>logic+logic next</td>
<td>logic+memory logic+logic next</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Saving with 3D ICs
(PI: Sung Kyu Lim, GRC-SLD 2293)

670MHz
SYN 28nm (bulk)

2D (8x9mm, 8.24W)

3D (6x6.4mm, 7.19W)
Δ12.7%, TSV=3,263

3D (6x6.4mm, 6.81W)
Δ17.3%, TSV=69,091

logic + memory

logic

memory

logic + memory

logic + memory
Thermal Analysis
(PI: Sung Kyu Lim, GRC-SLD 2293)

Thermal conductivity map = where TSVs are

2D (Tmax = 45.4°C)

3D (Tmax = 61.7°C)

3D (Tmax = 59.2°C)
Want More Saving? Add One More Tier
(PI: Sung Kyu Lim, GRC-SLD 2293)

- Power saving is now 25.6%! = one node advantage
“Shrink 2D” flow [ISLPED’14]
- Reduce footprint, cell, and interconnect by 50%
- Perform 2D place/route using a commercial tool
- Repopulate, partition, placement repair, and detail route

Transferred to
Handling Macros
(PI: Sung Kyu Lim, GRC-CADT 2239)

1. Pre-Placed Memory

2. Memory Projection

3. Shrunken 2D P&R

4. Tier Partitioning

(reduced placement density over partial blockages)
Exploration of Adaptive 3D Many Core Architectures

Goal: Sustaining Performance Implications of Moore’s Law

Challenge: Impact of physical phenomena on system performance

Solution: Adaption mechanisms to extend voltage-frequency operating range of 3D many core processors

PIs: Sudhakar Yalamanchili and Saibal Mukhopadhyay

Students: William Song (SRC Fellow), He Xiao, Wen Yueh

Internships: IBM (2014), Intel (2014)

Liaisons: V. De (Intel), R. Rao (IBM)
Completion of a full system open source modeling environment for 3D architectures

- Power delivery network (PDN) models
- New thermal field models
- Integrated 3D models including cooling
- 3D system architecture models
- Improved temperature-delay model for SRAM (+) and eDRAM (+)
 - FinFET and Planar device models (+)
- Proposed SRAM adaptation mechanisms
- Improved 3D system architecture model
- Short Stack 3D architecture concept
- System Level Impact of IVR
- Multicore Lifetime Reliability Management
Major Program Results

1. Lifetime Reliability Management
 - Improved Lifetime
 - Processor MTTF Distribution

2. Adaptive Core-Cache Power Management

3. Short Stack: Multicore + Last Level Cache

4. Thermally Adaptive Last Level Cache
Task ID: 2493.001

Task Title: Models, Algorithms and BIST Hardware Development for Manufacturing & Characterization Tests of Spin-Transfer-Torque MRAM Arrays

Task Leader: Arijit Raychowdhury

Custom Funding: Intel

Industry Liaisons: Helia Naeimi, Suriyaprakash Natarajan (Intel)

Science Area: Computer Aided Design & Test Sciences

Students: Abhinav Parihar, Ashwin Chintaluri

Internships: Intel (2014)
Deliverables and Status

Key Deliverables and Status

Year 1:
- Build atomistic models for spin dynamics with current injection and extract model parameters for circuit level evaluation.
- Deduce fault models (RD/WR/RET) for both variation and defects

Year 2:
- Develop design of BIST and DfT circuits to allow statistical data collection.
 - Initial exploration of regression models for fast and efficient testing of retention time using short-pulse measurements.

Year 3:
- Investigate regression models along with extreme-value statistical models to allow P_{FAIL} data collection at short pulses and correctly extrapolating them to longer pulse widths for correct determination of Δ. Calibration of proposed model with measurements (joint work with Intel).
- Exploration of novel STTRAM architecture for yield, and resiliency through on-line tests and adaptation schemes.
Key Results

STTRAM Model from devices to arrays

Analysis of variations in RD, WR and Retention

1. Effect of defects on RD, WR in arrays
2. Sensitivity Analysis of defects
3. Data pattern dependence and test patterns necessary to activate defects.
SRC Research Overview: Devices, Circuits, Interconnects

Muhammad Bakir
Hua Wang
Azad Naeemi
John Cressler
SRC GRC Semiconductor Synthetic Biology (SemiSynBio) Program (Task ID: 2484.001).

GT PI: Hua Wang (ECE) and Co-PI: Mark Styczynski (ChBE)

Motivation: Existing solid-state biosensors are mostly of single-modality and cannot capture the complex and multi-physical cell responses. This substantially limits the capability of cell-based arrays.

CMOS sensor chip in a standard cell culture plate
I/O pads and wire-bonds are sealed by PDMS packaging.
Mouse Neurons labeled with green fluorescent protein are used as the sensing cells.

The optical shadow image (middle) closely matches the fluorescence image (right) → Showing the correct 2D distribution of the cells.

Electrical impedance imaging measures the cell attachment, which cannot be captured by the optical image → Providing orthogonal cellular information.

• Physics and Modeling of SiGe HBT Reliability
 Analog and Mixed-Signal Thrust: GRC Task 2160 (TI mentored)

• Aging-Enabled Compact Models for SiGe Circuits
 Analog and Mixed-Signal Thrust: GRC Task 2388 (TI mentored)
 Goal: Empower Circuit Designers By Developing Tools to Quantitatively Predict End-of-Life Performance of Mixed-Signal SiGe HBT Circuits

John D. Cressler

2013 IEEE BCTM Best Student Paper

Georgia Institute of Technology

June 23, 2015
Beyond CMOS Material, Device, and Circuit Research
SRC-MSR (Intel) and SRC-NRI (INDEX)

- Compact physical models are being developed and used to optimize/benchmark emerging devices, to guide technology development, and to formulate novel circuit concepts.

Si Interconnect for All-Spin Logic (IEEE T-MAG 2014)
Giant Spin Hall Current Controlled Logic (NRI-INDEX)

Azad Naeemi, ECE

Novel Circuit Concept for Pattern Recognition Using spintronic Devices (submitted)

Domain Wall Automation Interconnect (IEEE JxCDC)
Novel Spin Wave Circuit Concept (Nature Scientific Report)
Example: Complete SPICE Model for Spintronic Devices/Circuits

Stochastic LLG for nanomagnet dynamic

Describes the electric voltage and current

Describes the x component of the spin current

Describes the y component of the spin current

Describes the z component of the spin current

Impact of TSVs and Wires on 3D IC Interconnect Links

Research motivation and goal:
- Understand how TSVs and wires impact 3D IC link performance.
- Analyze the key bottle necks limiting 3D IC link performance with modeling and experiments.

Muhannad S. Bakir, ECE

A simple 3D IC link

Circuit Model for the 3D IC link

Experiment

Fabricated structure

Fabrication process

1) SiO2 deposition
2) SiO2 dry etching
3) Si etching
4) SiO2 removal and growth
5) Cu electro-plating
6) Chemical-mechanical polishing
7) PR patterning and Cu deposition
8) Cu lift-off
Impact of TSVs and Wires on 3D IC Interconnect Links

Conclusion:
- Impact of TSV is less significant when it is placed close to the driver.
- Driver side resistance and TSV capacitance dominates 3D IC link delay.

Frequency Domain

- Original measured S21
- Impact of TSV: Trace length = 1mm

Time Domain*

- 0.5 mm
- 1 mm
- 2 mm
- 4 mm
- Trace only
- TSV-Trace
- Trace-TSV
- TSV-Trace-TSV

*data rate at 8 Gbps. Trace length = 1 mm for eye diagrams at second row
High Aspect Ratio Nano-scale Vertical Inter-tier Connection (VICs)

(a) Silicon Substrate (1st Layer)
(b) Silicon Substrate (2nd Layer)
(c) VIC
(d) Metallization (2nd Layer)

The schematic of our sequential 3D integration technology. a) Fabrication of 1st layer (the most bottom layer), using conventional CMOS process. b) Fabrication of the second layer using conventional CMOS process. c) Integration of the VICs. d) Continuing metallization process for the 2nd layer. e) Thinning down the 2nd silicon substrate. f) Stacking up the 2nd layer.

FIB cross-sectional view of void-free Cu filled 700nm diameter VIC.

Cross-sectional view of a cleaved sample, shows void-free copper filled 300nm diameter VICs with 27:1 aspect ratio.

a) Top-view SEM image of VICs. The excessive electroplated copper layer is polished off using CMP process and the copper filling is visible. b) The substrate is back etched, accessing the bottom of VICs for electrical characterizations and the SEM images shows the copper filling is void free at the bottom.
Polymer-embedded Vias for Superior Electrical Performance

TSV de-embedding required to understand losses and extract parasitics of a polymer-embedded via.
Integration of Microfluidic Cooling With 3D ICs

- Silicon micropin-fins with embedded TSVs

Top and angled view

Cross-sectional and side view

Circular micropin-fin heat sink embedding 9 TSVs

Bottom-up electroplated TSVs (18:1 AR)

Two stacked chips

"Interlayer Microfluidic IC Cooling Integration with Through Silicon Vias", Ashish Dembla, Yue Zhang and Muhannad S. Bakir, IITC 2012
30 Years of Collaboration with SRC

- Two Centers: IFC (10 Univs) and IPC (5 Univs)
- $103M in grants, contracts and fellowships to GT
- 44 patents
- 95 Graduate and 12 post docs supported
- Extensive research program for UG students through ORS
- Several major SRC and national/international awards to GT faculty
Thank you!