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This article presents new data reduction methods based on the discrete wavelet transform to handle po-
tentially large and complicated nonstationary data curves. The methods minimize objective functions to
balance the trade-off between data reduction and modeling accuracy. Theoretic investigations provide the
optimality of the methods and the large-sample distribution of a closed-form estimate of the thresholding
parameter. An upper bound of errors in signal approximation (or estimation) is derived. Based on evalu-
ation studies with popular testing curves and real-life datasets, the proposed methods demonstrate their
competitiveness with the existing engineering data compression and statistical data denoising methods
for achieving the data reduction goals. Further experimentation with a tree-based classification procedure
for identifying process fault classes illustrates the potential of the data reduction tools. Extension of the
engineering scalogram to the reduced-size semiconductor fabrication data leads to a visualization tool for
monitoring and understanding process problems.
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1. INTRODUCTION

Recent technological advances in automatic data acquisi-
tion have created a tremendous opportunity for companies to
access valuable production information for improving opera-
tional quality and efficiency. Signal processing and data mining
techniques are more popular than ever in such fields as sensor
technology and intelligent manufacturing. As datasets increase
in size, exploration, manipulation, and analysis become more
complicated and resource-consuming. Figure 1 presents an ex-
ample of data taken from Nortel’s wireless antenna manufac-
turing processes. There are more than 30,000 data points in one
antenna dataset with complicated patterns. Timely synthesized
information was needed for product design validation, process
trouble shooting, and production quality improvement. How-
ever, the local changes in the cusps and lobes of the data
were difficult to handle for traditional data analysis tools.
Ganesan, Das, Sikdar, and Kumar (2003) have provided an-
other motivating example from a nano-manufacturing process.
This motivates the focus of this article: developing data reduc-
tion procedures for data analysis tools to be useful in handling
large-sized complicated functional data. Studies in Section 4
show that the proposed procedures are more effective for data
signals, with sharper changes and less noise. Applications pro-
ducing this type of signal, such as the foregoing examples, can
take advantage of the procedures; see Table 1 and Figure 2 for
details.

Several data reduction procedures are available in the liter-
ature. Lu (2001) summarized them into three main categories:

sampling approaches, modeling and transformation techniques,
and data splitting methods. Even with these methods, it is
recognized that complicated functional or spatial data with non-
stationary, correlated, or dynamically changing patterns con-
tributed from potential process faults are difficult to handle.
Wavelet transforms model irregular data patterns, such as the
lobes in Figure 1, better than the Fourier transform and standard
statistical procedures (e.g., splines and polynomial regressions)
and provide a multiresolution approximation to the data (Mallat
1988, p. 378). Applications of wavelet-based procedures in
solving manufacturing problems include using tonnage signals
to detect faults in a sheet-metal stamping process (Jin and Shi
1999), analyzing different catalyst recycling rates to diagnose
failures in a residual fluid catalytic cracking process (Wang,
Chen, Yang, and McGreavy 1999), and processing quadrupole
mass spectrometry (QMS) samples of a rapid thermal chemical
vapor deposition (RTCVD) process to detect significant devia-
tions from the nominal processes (Lada, Lu, and Wilson 2002).

Using expert knowledge of a particular process, one could
derive a “feature-preserving” procedure (Jin and Shi 1999) to
extract a particular data pattern represented by a few “fea-
tures,” then link these features to a specific type of process
fault for monitoring production performance. More rigorously,
if the “reduced-size dataset” consisting of these features is
constructed to detect specific types of known faults, then a
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(a) (b)

Figure 1. Data Signals From Antenna Manufacturing Processes: (a) Antenna; (b) Azimuth-Cut Data.

data reduction procedure could be derived to minimize type
I or II errors in hypothesis testing of the occurrence of faults.
For example, Jin and Shi’s (2001) optimal number of wavelet
coefficients used in the fault classification is based on the
minimization of probabilities of misclassification errors using
statistical process control (SPC) limits as the decision rule. But
the wavelet coefficients selected for a given decision rule might
not be suitable for other purposes of analysis. The aim of our
data reduction is to produce a small set of “representative data”
suitable for data and decision analyses either planned or un-
planned before seeing the data.

Data denoising procedures, such as VisuShrink (Donoho and
Johnstone 1994) and RiskShrink (Donoho and Johnstone 1995),
are used as data reduction tools in a wide range of applications
(e.g., Jin and Shi 2001; Ganesan et al. 2003); see Section 3.2 for
details. In another method, Rying et al. (1997) applied a scale-
dependent energy metric, Es = sum of squares of all wavelet
coefficients (see Sec. 2 for a brief overview of wavelets) at
atoms ψs,u across all u positions at the same scale s, to the
Ar+ signals in a semiconductor fabrication experiment. The
scalogram (Vidakovic 1999, p. 289; see Fig. 12 for an example)
plots these energy metrics at different resolution scales for visu-
alizing the data–energy distribution. These energy metrics serve
as representative reduced-size data so that procedures such as
linear discriminant analysis can detect and distinguish process
faults in a timely manner.

The purposes of data denoising and data reduction are dif-
ferent. Data in engineering applications [e.g., Figs. 1, 4, and
7(a)] do not have large-sized random noises for demonstrating
the effectiveness of data denoising procedures. Section 4 (e.g.,

Tables 1–4) uses simulations and real-life examples to illustrate
that the ability of data denoising procedures in data reduction is
limited. In contrast, the energy-metric approach is too aggres-
sive and is not linked to local data characteristics. For exam-
ple, any functional curve with 1,024 data points will have the
same six Es-measures. This article develops a well-motivated
objective function for selecting the reduced-size data, derives
the “thresholding parameter” to optimize the objective function,
and evaluates the properties of the data reduction procedures
with several simulation experiments and real-life data analyses.

Section 2 provides background information on wavelet trans-
forms. Section 3 presents details of the data reduction methods.
Section 4 conducts various comparisons between the proposed
methods and extensions of existing methods. Section 5 gives
examples of using the reduced-size data in decision making
analyses. Finally, Section 6 provides a few concluding remarks
and future studies.

2. WAVELET TRANSFORMS

A wavelet is a function ψ(t) ∈ L2(R) with the basic proper-
ties ∫

R

ψ(t)dt = 0 and
∫

R

ψ2(t)dt = 1,

where L2(R) is the space of square-integrable real functions de-
fined on the real line R. Wavelets can be used to create a fam-
ily of time-frequency atoms, ψs,u(t) = s1/2ψ(st − u), through
the dilation factor s and the translation u. Scaling function
φ(t) ∈ L2(R) is defined similarly, but

∫
R

φ(t)dt �= 0.

Table 1. Results of Data Reduction for Testing Signals

Threshold value M = no. of coefficients selected

Signals Energy λ̂h λ̂s RREh RREs Visu Risk SURE AMDL

Nason 94.25 .3034 .6986 31 138 192 225 324 192
Heavisine 90.28 .2969 .6803 28 143 287 290 292 194
Blocks 72.36 .2658 .5099 67 379 389 407 518 391
Bumps 17.63 .1312 .3401 91 405 646 664 722 894
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Figure 2. Four Testing Signals From the Literature.

Select the scaling and wavelet functions as {φL,k(t) =
2L/2φ(2Lt − k); k ∈ Z} and {ψj,k(t) = 2j/2ψ(2jt − k); j ≥ L,

k ∈ Z}. In practice, the following orthonormal basis of wavelet
is used to represent a signal function f (t) ∈ L2(R):

f̃ (t) =
∑
k∈Z

cL,kφL,k(t) +
J∑

j=L

∑
k∈Z

dj,kψj,k(t), (1)

where Z denotes the set of all integers {0,±1,±2, . . .}, the
coefficients cL,k = ∫

R
f (t)φL,k(t)dt are considered the coarser-

level coefficients characterizing smoother data patterns, dj,k =∫
R

f (t)ψj,k(t)dt are viewed as the finer-level coefficients de-
scribing (local) details of data patterns, J > L, and L corre-
sponds to the coarsest resolution level.

Consider a sequence of data y = ( y(t1), . . . , y(tN))′ taken
from f (t) or obtained as a realization of

y(t) = f (t) + εt (2)

at equally spaced discrete time points t = ti’s, where the εti ’s are
random normal N(0, σ 2) noises. The discrete wavelet transform
(DWT) of y is defined as d = Wy, where W is the orthonor-
mal N × N DWT matrix. From (1), d = (cL,dL,dL+1, . . . ,dJ),
where cL = (cL,0, . . . , cL,2L−1), dL = (dL,0, . . . ,dL,2L−1), . . . ,

and dJ = (dJ,0, . . . ,dJ,2J−1). Using the inverse DWT, the N ×1
vector y from the original signal curve can be “reconstructed”
as y = W′d. The process of applying the DWT to transform
a dataset closely resembles the process of computing the fast
Fourier transformation (FFT).

The DWT has better computational efficiency than the
other transforms. For example, principal component analysis
(PCA) requires solving an eigenvalue system that is an expen-
sive O(N3) operation. The FFT requires O(N log N) operations,
but a fast wavelet transform requires only O(N) operations. As
an example, the data reduction method (e.g., RREh) developed
in Section 3.3 can be applied to a very complicated nonstation-
ary data pattern of 1,204 data points (see Fig. 8) with programs
written in Matlab using a Pentium III personal computer. The
total amount of time for DWT and wavelet coefficient selection
is about 1 second.

Finally, the process fault patterns, which are frequency- or
phase-shifted, are invisible to time domain control limits and
can be easily detected by the wavelet transforms. Thus wavelet
transforms could be very useful in on-line process monitoring
(Koh, Shi, Williams, and Ni 1999).

3. DATA COMPRESSION, DENOISING, AND
REDUCTION METHODS

To demonstrate the difference between the proposed and ex-
isting methods, the following sections briefly review the back-
ground of all methods. Section 4 presents comparison details.

3.1 Signal Approximation and Data
Compression Methods

In signal processing, the linear approximation method (see
Mallat 1988, sec. 9.1, for details) uses the function fM =∑M−1

m=0 〈f,gm〉gm with a set of pre-determined vectors gm,
m = 0,1, . . . ,M − 1, to reconstruct the original data signals,
where 〈f,gm〉 is the inner product of the function f and the pro-
jected vector gm. In the wavelet-based approximation, 〈f,gm〉
is the wavelet coefficient (from the coarsest level to the finest
level in the linear method).

The nonlinear approximation method (Mallat 1988, sec. 9.2)
selects the M projection vectors [e.g., M-largest wavelet co-
efficients (in absolute values)] adaptively using the data sig-
nal information to improve the approximation error. In both
linear and nonlinear approximation methods, M is fixed by
the decision maker or by the predetermined error bound (e.g.,
ε(M) = ∑N

i=1[ f (ti) − fM(ti)]2/N). The wavelet coefficients se-
lected from the foregoing approximation methods are usually
treated as “compressed data” for reconstructing the original
data signals. In this article they are treated as “reduced-size”
data in decision making analyses.

The literature includes limited studies on determining the
number of vectors (M) used in the model fM adaptively based
on signal characteristics. The approximate minimum descrip-
tion length (AMDL) method proposed by Saito (1994) se-
lects M to minimize the following objective function:

AMDL(M) = 1.5M log2 N + .5N log2

[
N∑

i=1

( yi − ŷi,M)2

]
,

where ŷi,M is the approximation model similar to (1) con-
structed from the M largest-magnitude wavelet coefficients and
the data yi consist of y(t) evaluated at t = ti from the model (2).
As addressed by Antoniadis, Gijbels, and Grégoire (1997), the
AMDL(M) function is similar to the Akaike information quan-
tity commonly used in statistical model selection procedures,
including linear regression models. There are several similar
model selection methods in the signal processing literature
based on objective functions related to quantities defined in “in-
formation theory,” such as entropy and mutual information (see
Ihara 1993 and Liu and Ling 1999 for examples).

3.2 Data Denoising: Wavelet Shrinkage Methods

Data denoising methods are developed based on statistical
models. Specifically, applying the DWT d = Wy to the data y
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generated from the model (2), we obtain

d = θ + η, (3)

where d, θ , and η represent the collections of all coefficients,
parameters, and errors, transformed from the data y(ti), the true
function f (ti), and the error ε(ti) in the time-domain. Because
W is an orthonormal transform, ηj,k’s are still iid N(0, σ 2)

(Vidakovic 1999, p. 169).
Donoho and Johnstone (1995) developed several wavelet-

based “shrinkage” techniques to find a smooth estimate (f̂ ) of f
from the “noisy” data, y. In particular, their hard-thresholding
policy found the estimate of θi to minimize the objective func-
tion

N∑
i=1

(di − θi)
2 + τ 2

N∑
i=1

|θi|0, (4)

where
∑N

i=1 |θi|0 is the number of nonzero coefficients selected
to estimate the underlying function f (using f̂ = W−1θ̂). The
optimal estimate θ̂i was found to be equal to di if |di| > τ and
to 0 otherwise. Although the parameter τ was not set as the
threshold originally, it becomes the threshold in the estimate
of θi through the minimization process.

Because smaller coefficients are usually contributed from
data noises, thresholding out these coefficients has an effect
of removing data noises. Thus the shrinkage methods are
called data denoising methods. The VisuShrink (Donoho and
Johnstone 1994), RiskShrink (Donoho and Johnstone 1995),
and SURE (Donoho and Johnstone 1995) are three popular
thresholding methods commonly used in practice. They repre-
sent different ways to find the optimal choice of the threshold τ

based on another set of criteria. For example, RiskShrink mini-
mizes a theoretical upper bound of the asymptotic risk to find τ

(see Donoho and Johnstone 1994, 1995 for details). These data
denoising methods are used in Section 4 for comparison stud-
ies.

Shrinkage methods require an estimate of the standard
deviation σ for calculating the threshold value; for exam-
ple, VisuShrink’s threshold is (2 ln N)1/2σ . Different estimates
of σ will lead to distinct thresholds and different numbers
of wavelet coefficients. This article uses a robust estimate,
σ̂ = median(|dJ,k| : 1 ≤ k ≤ N/2)/.6745, suggested by Donoho
and Johnstone (1994), where J is the finest resolution level. The
next section proposes two new data reduction methods that do
not require estimation of σ .

3.3 Data Reduction Methods: RREh and RREs

Usually, data denoising, AMDL, and nonlinear signal ap-
proximation methods retain the largest number of coeffi-
cients Mλ based on some derivations of the threshold λ (see
Cherkassky and Shao 2001 and Portilla and Simoncelli 2000
for other schemes in data denoising research). Our methods
also follow this principle by assuming that larger wavelet coef-
ficients will better characterize signal patterns in terms of their
energy and thus will retain more information.

Definition 1. The energy of a finite sequence f = ( f1, . . . , fN)

is defined by ξ = ‖f‖2. Correspondingly, the empirical estimate
of the energy of a data signal is ξ̂ = ‖y‖2 = ‖d‖2.

The following theorem gives an upper bound of the approxi-
mation (or estimation) error using the largest M wavelet coeffi-
cients. These errors represent the “reconstruction error” in our
data reduction methods.

Theorem 1. For f ∈ L2(R), an upper bound of the approx-
imation error for fM , is ‖f − fM‖2 ≤ [(N − M)/M]ξ , and an
upper bound of the estimation error for f̂M is E‖y − f̂M‖2 ≤
[(N − M)/M]E(ξ̂ ).

Data reduction and denoising methods are distinct for differ-
ent purposes. As seen in (4), data denoising procedures aim to
find the estimate θ̂ (and f̂ ) for reducing “modeling error” of θ
(and f ). Thus the data denoising methods are more aggressive in
reducing the modeling errors. Conversely, data reduction meth-
ods select the “reduced-size” data with a more aggressive data
reduction ratio. However, the selected reduced-size data should
be sufficiently representative in capturing key data character-
istics for subsequent planned or unplanned decision analyses.
Theorem 2 shows that our data reduction methods depend ex-
plicitly on the “data energy” representing data characteristics,
whereas VisuShrink depends on the variance (σ 2) representing
data noises.

The following data reduction criterion is developed for bal-
ancing two ratios: the relative data energy in the approximation
model and the relative number of coefficients used (i.e., the data
reduction ratio),

RREh(λ) = E‖d − d̂h(λ)‖2

E‖d‖2
+ ω

E‖d̂h(λ)‖0

N
, (5)

where ‖d̂h(λ)‖0 = ∑N
i=1 |d̂h,i(λ)|0 is the number of coefficients

selected and |d̂h,i(λ)|0 = 1 if d̂h,i(λ) �= 0 and |d̂h,i(λ)|0 = 0 oth-
erwise. Theorem 2 finds the optimal λ to minimize (5).

Using “normalizing constants” to make the two balancing
terms compatible is critical; Table 2 gives the results of empir-
ical studies to illustrate its impact. The weighting parameter ω

Table 2. Impacts of Normalization for Data Reduction

With normalization Without normalization

Signals Relative error M/N RREh Relative error M/N RRE∗
h

Bumps (SNR∗ = ∞) 2.18E–02 .090 .112 2.81E–19 .770 .770
Bumps (SNR∗ = 15) 2.94E–02 .066 .096 6.18E–04 .456 .456
Bumps (SNR∗ = 7) 3.97E–02 .066 .106 2.98E–03 .432 .435
Bumps (SNR∗ = 3) 9.45E–02 .066 .161 1.60E–02 .395 .411
RTCVD 1.77E–02 .130 .147 8.89E–07 .578 .578
Antenna 4.25E–02 .180 .222 3.27E–05 .644 .644
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is user-selected or provided by such methods as generalized
cross-validation (GCV) (Craven and Wahba 1979). However,
further studies are needed to develop the GCV-like selection
of ω in our problem and understanding its properties. For sim-
plicity, here we use ω = 1, which places equal weight on both
components in follow-up studies (see Remark 4 in Sec. 4 for
the guideline of determining the weight parameter ω). In what
follows we use engineering and statistical experience to moti-
vate the objective function (5). Our discussion focuses on the
hard-thresholding-based method, RREh. A similarly motivated
method, RREs, based on the soft-thresholding policy, is pre-
sented in the Appendix.

In engineering applications such as that of Mallat (1988,
pp. 378–391), the “relative error,”

RE = ‖f − f̂‖
‖f‖ , where ‖f‖ =

(
N∑

i=1

f (ti)
2

)1/2

,

is commonly used in comparing signal approximation qual-
ity. This is similar to the first term in (5). This article uses a
thresholding parameter λ to decide which wavelet-domain data
to keep and which to discard in decision making analyses us-
ing the terms d̂h,i(λ) = I(|di| > λ)di, i = 1, . . . ,N. Ideally, only
a small portion of the data is kept to meet the data reduction
goal. This is quite different from the data denoising procedure,
in which the parameter τ was not originally set as the thresh-
old for data reduction purposes in the construction of the ob-
jective function (4). Recall that in the discussion after (4) that
the denoising procedures are aimed at estimating the θi’s. Their
threshold τ for the estimate θ̂i is decided from another set of
criteria, such as minimizing a theoretical upper bound of the
asymptotic risk.

Equation (5)’s second component serves as a penalty term
for limiting the size of data used in follow-up decision analy-
ses. Similar penalty ideas have been used in ridge regression
(Hastie, Tibshirani, and Friedman 2001, p. 59) and neural net-
work (Hastie et al. 2001, p. 356). For example, like the data
denoising method of finding estimate θ̂ , ridge regression finds
the optimal estimate of regression coefficients to minimize the
following objective function:

N∑
i=1

( yi − β0 − β1xi1 − · · · − βpxip)
2 + ω

p∑
j=1

βj
2,

where ω is a weighting parameter like that in (5). Note that this
objective function is not normalized, as was done in (5). More
important, ridge regression does not use a threshold to select
which data to keep in follow-up decision analyses.

The following presents a few analytical properties of the pro-
posed data reduction method. The closed-form solution of the
optimization of (5) becomes handy in practical implementa-
tions. The proof of the theorem is given in the Appendix.

Theorem 2. Consider the model stated in (3). Then we have
the following:

(a) The objective function RREh(λ) is minimized uniquely
at λ = λN,h, where

λN,h =
(

1

N
E‖d‖2

)1/2

; (6)

the moment estimate of λN,h,

λ̂N,h =
(

1

N

N∑
i=1

d2
i

)1/2

=
(

ξ̂

N

)1/2

. (7)

(b) (λ̂N,h − λN,h)
w.p.1−→ 0.

(c)
√

N(λ̂N,h − λN,h)/σ
∗
N,h

d−→ N(0,1), where

(σ ∗
N,h)

2 = 1

4N

(
4σ 2 ∑N

i=1 θ2
i + 2Nσ 4

∑N
i=1 θ2

i + σ 2

)
.

Consider a few well-known testing signal curves (in the same
scale and with mean 0) with 1,024 data points in each curve
(Fig. 2) taken from the literature (e.g., Donoho and Johnstone
1995). Table 1 shows the relationship between the energy value
of signals and the number (M) of wavelet-domain data selected.
Note that our methods normalize the signal to have mean 0
and apply the thresholding rules to all resolution levels of the
wavelet coefficients, whereas the denoising techniques do not
threshold the coefficients in the coarser level (cL,k’s; L in (1) is
preselected, e.g., L = 4 for N = 1,024) (Donoho and Johnstone
1995).

Based on the observations from Table 1, in general, if the sig-
nal has a larger value of energy, then its threshold value will be
higher (see, e.g., the threshold values for RREh and RREs) and
will be more likely to have a smaller M. There are some excep-
tions to this, however. For example, if most of the signal energy
is kept in a few larger wavelet coefficients, then the signal has
a set of very “unbalanced” wavelet coefficients. When there is
a larger number of smaller coefficients, the number of thresh-
olded coefficients is smaller. This leads to a smaller M. For
example, the threshold values λ̂h in Nason and Heavisine sig-
nals are very close, but the energy for the Heavisine is slightly
more unbalanced. This leads to a slightly smaller M in RREh for
the Heavisine signal. Vidakovic (2000) provided a technique to
compare signals with different unbalancing characteristics.

Table 2 presents the impact of not using the normalizing con-
stants in (5), denoted by RRE∗

h , where SNR∗ = std(f )/σ repre-
sents the noise level of data, std(f ) is the standard deviation of
the discretized signal points, and σ is the standard deviation of
noise. Smaller SNR∗ means that the data are noiser. Note that
RREh in Table 2 is the sum of the first two columns, relative
error and M/N, representing the metric defined in (5). Without
normalization, the RRE∗

h procedure has a very poor data reduc-
tion ratio for all cases studied, and its performance is similar
to that of data denoising methods for data reduction purposes.
That is, it overemphasizes reducing modeling error by sacrific-
ing their data reduction ability. The relative errors of RRE∗

h are
very small, with plots similar to Figures 3–6 produced by data
denoising methods (see Tables 3 and 4 for details).

4. COMPARISONS OF DATA REDUCTION METHODS

Although methods described in Sections 3.1 and 3.2 were
not developed for data reduction purposes, practitioners used
them for selecting “reduced-size” data to perform various deci-
sion analyses. This section compares the six methods presented
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Figure 3. Reconstruction of the “Noise-Free” Bumps Signal.

in Section 3 in terms of their modeling error and data reduc-
tion ability. The data patterns for comparisons include two real-
life data curves (Figs. 4 and 5) and four well-known testing
signals from the wavelet literature (Fig. 2). The four “noise-
free” testing signals characterize different types of important
features arising in imaging, seismography, manufacturing, and
other engineering fields. The symmlet-8 wavelet family is used
in wavelet transforms for all cases.

Tables 3–5 present comparison results with the following
summary measures: (1) reduction ratio (%): RR = (1−M/N)×
100; (2) RelErr = ‖f − f̂M‖/‖f‖ for the case without random
errors and RelErr = ‖y − f̂M‖/‖y‖ for the case with random
errors; and (3) AMDL measure.

Figure 3 shows the results for the bumps signal. The
VisuShrink, RiskShrink, SURE, and AMDL(M) procedures
achieve very small modeling errors (see Table 3 for the very

Figure 4. Reconstruction of the RTCVD Signal.

Figure 5. Reconstruction of the Antenna Data.

Figure 6. Noisy Bumps Signal at Various Noise Levels.

Table 3. Results for the Noise-Free Bumps Signal

Method M RelErr RR AMDL

VisuShrink 646 1.50E–16 36% 16,390.6
RiskShrink 664 1.23E–18 35% 13,108.3
SURE 722 2.22E–21 29% 26,321.8
AMDL 894 3.91E–25 13% 5,506.6
RREh 91 2.18E–02 91% 32,151.2
RREs 405 1.51E–09 60% 24,682.6

Table 4. Results for the RTCVD and Antenna Data

RTCVD Antenna

Method RR RelErr RR RelErr

VisuShrink 50% 9.92E–05 59% 1.70E–03
RiskShrink 46% 2.37E–06 45% 1.07E–04
SURE 36% 8.69E–08 27% 1.46E–05
AMDL 75% 5.35E–04 81% 7.47E–03
RREh 87% 1.77E–02 82% 4.25E–02
RREs 68% 2.27E–03 67% 5.55E–03
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Table 5. Results for the Noisy Bumps Signal

SNR∗ = ∞ SNR∗ = 15 SNR∗ = 7 SNR∗ = 3

Method RR RelErr RR RelErr RR RelErr RR RelErr

Visu 36% 1.50E–16 85% 1.06E–02 88% 3.96E–02 91% 1.60E–01
Risk 35% 1.23E–18 78% 2.45E–03 82% 1.12E–02 85% 6.12E–02
SURE 29% 2.22E–21 57% 8.95E–04 65% 5.39E–03 73% 3.85E–02
AMDL 13% 3.91E–25 88% 6.92E–03 91% 2.74E–02 95% 1.50E–01
RREh 91% 2.18E–02 93% 2.91E–02 93% 3.93E–02 93% 9.70E–02
RREs 60% 1.51E–09 85% 1.20E–02 86% 2.85E–02 75% 7.59E–02

small RelErr in the 10−16 level). RREs did as well as the others
when relative errors are compared. RREh missed some details in
the smoother signal between peaks. However, all of the shapes
and locations of the 11 peaks were identified and well modeled
by the more aggressive RREh method, which has a 91% data
reduction ratio as opposed to the 60% of RREs and <40% of
all other methods. Note that the values for AMDL-measure
are quite different from data reduction and denoising mea-
sures. Although the RelErr in SURE is the second best, its
AMDL-measure is much worse than that of the VisuShrink,
RiskShrink, and even RREs methods. It is interesting to note that
though the SURE and AMDL(M) methods have similar RelErr
and data reduction ratios, their AMDL-measures are very differ-
ent. Thus AMDL(M) and our RREh and RREs methods work
very differently for these curves.

Similar results were observed for several other testing sig-
nals (not shown here). Examples from Section 5 show that the
RREh and RREs methods did give accurate decision results even
with a more aggressive data reduction emphasis. The following
examples test whether the proposed methods work well in the
two real-life datasets in which errors were involved. Remark 1
discusses the studies of noisy bumps signals.

Example 1 (RTCVD data). The RTCVD process deposits
thin films on the wafer through a temperature-driven surface
chemical reaction. As feature size decreases, the functional op-
eration of semiconductors (e.g., transistors) becomes increas-
ingly unreliable because of variations in deposition processes.
Therefore, controlling process variability is critical. QMS is
commonly used in semiconductor manufacturing processes to
monitor thin-film deposition quality. The data shown in Fig-
ure 4 are for one of the several nominal RTCVD process runs
in a research project (Rying 2001) aimed at developing a new
measurement technique for on-line process monitoring. Al-
though there are only 128 data points in the curve, and the data
change pattern is not very complicated, this case study serves
as a basis for developing process monitoring and fault detec-
tion/classification tools applicable in various engineering ap-
plications; see Section 5.2 for more details. More important,
wavelet transforms are useful in locating change-points (e.g.,
the two peaks) for developing an integrated metric essential for
the new measurement technique (see Rying 2001 for details).

Results in Figure 4 and Table 4 show that the RREh could be
too aggressive in data reduction (87% ratio) because of its non-
smoothing fit in the straight rising component (data between
20 and 30 points); however, it did roughly pick up the two
peaks and other changepoints. The AMDL(M) did a much bet-
ter job in balancing the data reduction ratio and the modeling

error in this case. The errors of the three data denoising meth-
ods are smaller, but the reduction ratios are lower. It is difficult
to distinguish these small amount of modeling errors in the plots
through visual inspection.

Example 2 (Antenna data). The increasing popularity of
wireless communication has produced an increasing demand
for high-quality antenna equipment. Eighteen sets of antenna
data like that in Figure 1 were collected at Nortel for devel-
oping a procedure to monitor antenna manufacturing quality.
Figure 5 shows the reconstructed antenna curves based on var-
ious data reduction methods. Excluding the RREh method, all
methods model the complicated peak-and-valley patterns very
well. The RREh provides a reasonable fitting other than the val-
leys between the second and third peaks from the main lobe in
the middle. Surprisingly, the AMDL(M) has an excellent data
reduction ratio (81%), as good as that of the RREh; see Table 4
for details.

Remark 1. We also tested the robustness of the foregoing
data reduction methods against random noise. In a series of
experiments, various amount of random normal noises were
added to the testing signals. Figure 6 shows the noisy bumps
with different values of SNR∗. Table 5 summarizes model fit-
ting and data reduction results from all methods in the cases
where SNR∗ = 3, SNR∗ = 7, and SNR∗ = 15.

The reported results are the means of performance measures
from 100 simulation runs. The maximum coefficients of vari-
ation are 6% for AMDL and 2% for other procedures with re-
spect to RR, and 29% for AMDL and 10% for other procedures
with respect to RelErr. Smaller SNR∗ means a noisier signal.
For the signals with larger SNR∗ (i.e., less noisy), the noise
level (σ ) is lower, and the threshold value should be lower [e.g.,
the threshold value of VisuShrink is (2 ln N)1/2σ ]. This leads to
a larger number of selected coefficients. For this reason, the
denoising methods are less effective in data reduction and use
a larger number of wavelet coefficients in the model. A spe-
cific example is the drop in data reduction ratio for SURE in
Table 5 from the SNR∗ = 3 to SNR∗ = ∞ cases. With noisy
data, the difference in modeling errors from these six meth-
ods is smaller than the difference in the case without added
noises where SNR∗ is equal to ∞. The data reduction ratio stays
the same for the RREh, but improves considerably for all other
methods. However, they pay a price for the much larger mod-
eling errors (see Table 5) compared with the results given in
Table 3. Surprisingly, the modeling errors from the VisuShrink
and AMDL(M) methods in the case for SNR∗ = 3 (the most
noisy case studied) are larger than the errors in the proposed
RREh and RREs methods.
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(a) (b)

(c) (d)

Figure 7. Different Types of Signal Replications: (a) Four In-Control
Runs of RTCVD; (b) Curve With Added Random Noises; (c) Replicated
Piecewise Signals (nominal); (d) Replicated Piecewise Signals (case 2).

Remark 2. In engineering applications such as that of Lada
et al. (2002), replicated signal curves exhibit patterns, as shown
in Figure 7(a) from the RTCVD experiment. This type of
process variation could be easily experienced from the example
of circle signals from X-ray images of products. With a certain
amount of process variation, the resulting circles could have dif-
ferent radii and distinct centers, but they are all similar circles.
This type of process variation is quite different from the data
noise generated from model (2), where normal random noise is
added to a deterministic functional curve; see Figure 7(b) for
an example. Thus in the decision-tree evaluation experiment
(presented in Sec. 5.1), the replicates of data curves will be
generated from “engineering variations.” In addition, statistical
normal random noises are added. Figures 7(c) and 7(d) show
one example of the original and replicated curves from the data
generation procedure.

Remark 3. In deciding which wavelet family is most suit-
able for representing a data signal, the more “disbalancing” type
(i.e., more separation in the larger and smaller wavelet coeffi-
cients) of wavelet family used, the more efficient the data reduc-
tion will be. Because symmlet-8 showed excellent disbalancing
properties on most of the curves studied in our evaluation stud-
ies and application examples in Sections 4 and 5, we used it as
the “default” choice of the wavelet family in our data reduction
exercises.

Remark 4. We present the following guidelines for choos-
ing the weighting parameter ω. Figure 8 shows plots of cumu-
lative energy of ordered wavelet coefficients from smallest to
the largest (in absolute value). Note that Nason curve has the
smoothest pattern, with a single sharp change (see Fig. 2). Thus
only a few larger coefficients are needed to characterize the en-
ergy of the signal. Figure 8 shows that Nason curve has the
largest slope for the rising pattern, because of the inclusion of
the few largest coefficients in the last part of the energy cumu-
lation. In contrast, the bumps signal has many finer-level co-
efficients characterizing “bumps.” The larger size coefficients

Figure 8. Cumulative Energy of Data Signals ( Nason; Heavisine;
bumps; blocks).

will be more numerous from the bumps signal than from other
signals. Thus the Nason signal is more “disbalanced” than the
other three signals (see Vidakovic 2000 for more details on sig-
nal disbalancy).

In general, more disbalanced signals have better data reduc-
tion ratios (see Table 1). More importanty, for this type of
signal, because the signal energy is so focused in a few coef-
ficients, if these coefficients are included, then the relative error
will be small. Then even if more coefficients are added, the rela-
tive error will not change much. Thus, more disbalanced signals
will be less sensitive to the choice of ω. Our experience from
trying several values of ω with the four testing curves validate
this observation. For a less disbalanced signal, such as bumps, if
the relative error for the default choice ω = 1 is not satisfactory,
then smaller ω can be used to improve the fit. One might want
to check the sensitivity of decision analyses for a few choices
of ω’s.

In summary, RREh, AMDL(M), and RREs are more suit-
able for data reduction purposes; however, RREh could be too
aggressive in some cases where certain details are ignored.
AMDL(M) is not suitable for signal curves “without noise”
(e.g., the results in Table 3). VisuShrink, RiskShrink, and SURE
are not very effective in data reduction but have excellent mod-
eling qualities. When larger amounts of normal random noise
are added to the deterministic signal curves, the difference
between these six methods in terms of modeling quality and
data reduction ratio becomes smaller. This could be because
all methods performed worse in modeling the data with more
noise. The next section further examines the effectiveness of
the data reduction methods with various decision rules.

5. ILLUSTRATIONS OF DECISIONS BASED ON
REDUCED–SIZE DATA

This section presents two examples to illustrate the use of
selected reduced-size data in decision analyses. Note that there
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are several difficulties in these illustrations. As addressed in Re-
mark 2 of Section 4, engineering variations used for generating
replicated data curves are quite different from statistical random
noise. Another major difficulty is the selection of the reduced-
size data in the case of multiple curves. Note that if a data re-
duction method is applied to the multiple curves one curve at a
time, the selected wavelet coefficients will be different for dis-
tinct curves. Then these curves cannot be studied or compared
together because of the different wavelet bases of reduced-size
datasets. Jung, Lu, and Jeong (2004) have presented a vertical
thresholding procedure to tackle this problem. These difficulties
make it premature to compare data reduction methods in terms
of errors in decision rules; thus this section only illustrates the
potential use of selected reduced-size data.

When manufacturing processes become complicated, human
operators have difficulty identifying the sources of process
problems. Effective use of process data (e.g., control signals
and various stages of process performance measurements) in a
timely manner could drastically reduce process defects, produc-
tion costs, and more serious process problems. Section 5.1 dis-
cusses the possibility of making decisions on process fault types
using the classification and regression tree (CART) method.
Section 5.2 presents the interesting idea of using the wavelet’s
multiresolution property to construct a visualization plot for un-
derstanding process problems.

5.1 Fault Classification Using the Classification and
Regression Tree Method

CART is very popular in data mining applications (e.g., cus-
tomer relationship management). It is a tree with nodes at vari-
ous levels organized in a series of hierarchical binary decisions.
Each decision is based on the “cutoff value” of a chosen vari-
able. (See Breiman, Friedman, Olshen, and Stone 1984 for de-
tails of tree building and pruning procedures.)

To evaluate the error rate in applying CART to the reduced-
size data for classifying process fault types, various “replicated”
data curves were generated from a very difficult signal pattern
(see Fig. 8) taken from Mallat (1988, p. 378). In our experiment,
the entire curve is shifted to the left (or right) in 5 (or 10, 15, 20,
25, 30) time units (out of a total of N = 1,024 units) to generate
a new curve with added random N(0, σ 2) noises using a small
value of σ (=.1).

Figure 9 presents seven fault classes of curves, some of which
are considerably more difficult than others for decision trees to
correctly identify fault classes in. For example, the only differ-
ence between fault class 4 and the original curve is the smaller
amount of vertical drop of the first rectangle-shaped dip at
around 147–204 time units. Class 1 could also be considered
a difficult case where the first dip is filled smoothly. We gen-
erated 300 replicated curves for each of the eight cases. Thus
there are 2,400 data curves in this study.

To deal with multiple classes of replicated data curves, our
study uses the union positions of all selected coefficients (ob-
tained from application of the RREs method to individual data
curves) to create the reduced-size data. Because the RREs

method has better modeling accuracy than the RREh method,
it is our choice here. Although its data reduction ratio is not
as good as that of the RREh method in general, it does achieve

Figure 9. Mallat’s Piecewise Signals.

a 91.89% reduction ratio in this example. That is, only 83 out
of 1,024 wavelet coefficients are used in CART applications. In
the decision analysis, CART is supposed to identify all of these
fault types based on the reduced-size data.

There are no good guidelines available on how to divide
the 2,400 samples into training and testing datasets. Fukunaga
(1990) provided arguments in favor of using more samples for
testing than for training the classifier to challenge the classi-
fication rules. Therefore, our experiment used 1/3 of the data
randomly selected from each case for training and 2/3 data
for testing. Figure 10 shows the CART tree constructed us-
ing the reduced-size training data. This tree has eight terminal
nodes for locating data curves in different classes, nominal or
cases 1–7.

The decision nodes picked by CART for decisions have cer-
tain interesting interpretations. The first split is c5,6 ≤ −28.967,
where c5,6 is the sixth position coefficient in the coarsest reso-
lution level. This coefficient covers the support [161,192] in
the time domain, which is somewhere close to the first rectan-
gle dip. Note that fault class 1 does not have the dip, and fault
class 4 has a less-shallow dip. The coefficient selected for the
split at node 2 is c5,17. The coefficient c5,17 covers the support
[513,544], which is slightly to the right of the middle of the
curve. This coefficient presents a possibility of missing the sec-
ond and third peaks critical to fault detection and classification.
Similar interpretation could be obtained for other coefficients
selected by CART. In practice, most patterns could be identified
by the coefficients at the coarser resolution level, whereas only
a few patterns will require information from coefficients at finer
levels for decisions (e.g., d5,27 of node 7). Using combinations
of coarser- and finer-level coefficients at different hierarchies of
CART provides a multiresolution-oriented decision making op-
portunity not available in the time domain based on the original
data.

As an illustration for the time savings achieved by using the
reduced-size data for decision analyses, Figure 11 shows the
CART tree constructed using n = 1,024 points in the time do-
main. The larger-sized data in the time domain increased the
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Figure 10. CART Tree in the Wavelet Domain.

time needed to construct the decision tree by a factor of 10 com-
pared with working with the reduced-size data (55 vs. 5 sec-
onds); it took only 1 second to obtain the reduced-size dataset

by applying the DWT and the RREs method. The interpretation
of Figure 11 is somewhat different from that of Figure 10. In
node 1, the first split is t394 ≤ −12.283, where t394 is the value

Figure 11. CART Tree in the Time Domain.
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Table 6. Misclassification Error (%)

Training data Testing data

Class Wavelet Time Wavelet Time

Original 0 0 2.06 3.09
1 5.10 4.08 8.42 8.91
2 0 0 .51 0
3 0 0 0 0
4 5.43 3.26 6.25 12.02
5 0 0 0 0
6 0 0 0 .51
7 0 0 .49 0

Total error 1.25 .87 2.25 3.13

of the signal at time 394. In node 2, if t735 ≤ 11.622, then the
signal is classified as class 2; otherwise, the signal is classified
as class 7. Thus this tree compares the height of the signal at
a particular time point rather than the “energy” preserved in the
wavelet coefficients in certain support area, as illustrated in Fig-
ure 10.

The misclassification rates in the wavelet and time domains
and in the training and testing samples are given in Table 6.
The CART tree in the time domain was almost perfect with
respect to the training data, but it over-adapted to the features
specific to the training data and lost its generalization power.
Hence it did not work well when applied to the testing data.
The misclassification rate for the CART built from the reduced-
size data is comparable to that obtained using the original time
domain data in the training samples but is smaller (2.25% vs.
3.13%) in the testing samples. The existence of noise in signals
makes classification in the time domain difficult.

Remark 5. Our procedures were compared with the princi-
pal coordinates approach based on the function data-analytic
method proposed by Hall, Poskitt, and Presnell (2001). Their
method approximates the signal using the first M Karhunen–
Loève basis functions, with M determined from cross-validation
for minimizing the error in a specific decision method (e.g.,
the CART classification in our application here). Applied to
all eight data signal classes specified in Section 5.1, CART’s
total misclassification rates for their and our methods are
2.82% and 2.25%. Although our data reduction method RREs is
not designed for any specific decision method and their method
is designed for CART classification, our misclassification er-
ror, 2.25%, is slightly smaller than theirs. Similar observations
were obtained from normal distribution-based quadratic dis-
criminant analysis advocated by Hall et al. (2001), which has
a much higher total misclassification rate (about 25% in both
methods). Because their method requires more computing ef-
fort, is more difficult to interpret the selected coordinates (in the
sense of the reduced-size data), and might not be appropriate
when the data signal is noisy and the number of replicates is
limited (smaller than L), our procedures are more useful in data
reduction.

5.2 Multiresolution Fault Detection Using a
Thresholded Scalogram

One deficiency inherent in wavelet bases is the lack of a
shift-invariant property. For example, for two “replicated” data
curves with a slight shift in time [i.e, perturbation to left/right;

see Fig. 7(a)], when the two signals are decomposed via the
DWT, we can see appreciable differences between their wavelet
coefficients. Direct assessment from a particular wavelet coef-
ficient often leads to inaccurate decisions. For two signals with
a slight shift in time, energy metrics Es at each resolution scale
show no difference between the two signals. That is, the scale-
based energy representation provides a more robust (against
small shifts in time) signal feature for fault detection.

One advantage of wavelet transforms is the multiresolution
decomposition of complicated data signals. Information con-
tained in each resolution could be useful in different types of
fault detection; for example, the coarser-scale coefficients rep-
resent the global shape of the signal in the lower (coarser)
resolution level, whereas the fine-scale coefficients represent
the details of the signal in the higher (finer) resolution level.
We therefore propose using the following scalogram (Vidakovic
1999, p. 289) for fault detection:

Sdj =
mj−1∑
k=0

d2
jk, j = L,L + 1, . . . , J,

where mj is the number of wavelet coefficients in the jth resolu-
tion level. We use the notation ScL for the energy at the coarser
level (i.e., ScL = ∑2L−1

k=0 c2
L,k). The scalogram is a commonly

used tool in signal and image processing (Rioul and Vetterli
1991), astronomy, and meteorology studies (see Scargle 1997
for an example). It measures the signal energy contained in the
specific frequency band with a given scale.

For handling potentially large-sized data and removing sec-
ondary noises, we propose the following “thresholded scalo-
gram”:

S∗
dj
(λ̂) =

mj−1∑
k=0

I(|djk| > λ̂)d2
jk,

where λ̂ is the threshold value determined (from data) in var-
ious methods introduced in Section 3. Similarly, S∗

cL
(λ̂) =∑2L−1

k=0 I(|cLk| > λ̂)c2
Lk. The screening of smaller wavelet co-

efficients makes the detection of process fault more robust in a
noisy environment.

Figure 12 presents a thresholded scalogram plot (in a log2-
scale) of the RTCVD experimental data from three fault classes.
Figure 13 shows the data curves obtained from the nominal and
three fault classes. Comparably, the scalogram values for the
data in the fault class 3 are much different from the nominal
ones at any resolution levels. Due to similarity of data signals
in the original time domain, fault classes 1 and 2 have similar
scalogram values in the finer resolution levels d6 and d7 but
not in the coarser resolution levels c5 and d5. Comparing them
with the nominal case, fault class 2 and the nominal curves have
similar scalogram value in c5, but not in d5 and d6. Possibly
because of the sharp drop of the data curve in fault class 1, its
c5 value is quite different from the nominal one.

Let S∗
j represent the thresholded scalogram, S∗

dj
and S∗

cL
. The

following derives the needed (approximated) distribution theo-
rem for constructing a set of “lower and upper bounds” of val-
ues of the thresholded scalograms in process monitoring. The
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Figure 12. Thresholded Scalograms With Pointwise Confidence In-
tervals ( nominal; fault 1; fault 2; fault 3).

proof is based on a probability argument to establish the as-
ymptotic equivalence between S∗

j (λ̂) and S∗
j (λ), and on valida-

tion of the Lindeberg condition (as seen in the proof of Thm. 2)
for S∗

j (λ) (see Jeong et al. 2003 for details).

Theorem 3. If µ∗
j = E(S∗

j ) ≥ 0 and σ 2
mj

= var(S∗
j ) < ∞, then

log2 S∗
j − log2 µ∗

j

σmj

D−→ N

[
0,

1

(µ∗
j ln 2)2

]
as mj → ∞. (8)

Based on the approximated normal distribution, the (1 −
α)100% confidence interval for the log2-scale thresholded
scalogram is obtained as log2 S∗

j ± zα/2σ̂mj/[µ̂∗
j (ln 2)], where

zα is the usual upper α × 100%th percentile value of the stan-
dard normal distribution. The values of this confidence interval
will serve as the “monitoring bounds” for our scalogram plots.

Figure 13. RTCVD Signals in Fault Classes.

Figure 12 shows the bounds connected in a pointwise manner
from the 95% confidence intervals calculated at selected reso-
lution levels.

Because the RREh has a much better data reduction ratio (see
Table 4 for details) in analyzing the RTCVD data, it was used
in this example for the thresholding. Even with limited data
size, the monitoring bounds constructed from the approximated
distribution are rather tight. Results plotted in Figure 12 show
that these three fault classes of data curves are clearly out of
the bounds in almost all resolution levels except the coarsest
level (c5) for the fault 2 curve.

6. CONCLUSION AND FUTURE RESEARCH

This article has proposed an approach to handling a special
type of large and complicated functional data in data analysis
and decision making. Properties of the proposed data reduction
methods have been investigated by testing four popular signals
in the statistics and engineering literature and two real-life ex-
amples. Results from the classification trees show that the pro-
posed methods give similar accuracy (or better in some cases)
but more favorable computational efficiency compared with the
results obtained from analyzing the original larger-sized data.

Future work is needed to explore the strengths and weak-
nesses in other decision rules (e.g., cluster analysis in data
mining) and to extend the proposed idea to traditional quality
improvement and SPC areas (e.g., analyze design of experiment
data based on reduced-size information, analysis of variance
of time-sequence or spatial data based on thresholded wavelet
coefficients, and multiresolution SPC for spatial image data in
process monitoring). We will also consider extending the above
to high-dimensional data, for example, imagery dataset. Newly
developed multiscale methods for high-dimensional data, such
as beamlets, wedgelets (Donoho and Huo 2001), and so on will
be explored.
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APPENDIX: EXTENSION OF THE RREh METHOD TO
A SOFT–THRESHOLDING–BASED METHOD, RREs

A similar idea presented for RREh can be extended to the
soft-thresholding idea. In the wavelet shrinkage literature, it
has been shown that hard thresholding results in a larger vari-
ance of estimates, whereas soft thresholding has a larger bias.
Hard thresholding is also very sensitive to small changes in
the data. Soft thresholding has various advantages, such as
continuity of the shrinkage rule. Bruce and Gao (1996) pro-
vided a comparison study of these two thresholding policies in
data denoising applications; see Tables 3–5 for their compar-
isons in data reduction applications. The analytical properties
of RREs can be derived as presented in Theorem A.1. Denote

TECHNOMETRICS, FEBRUARY 2006, VOL. 48, NO. 1



38 MYONG K. JEONG ET AL.

d̂s(λ) = (d̂s,1(λ), . . . , d̂s,N(λ)), where d̂s,i(λ) = I(|di| > λ) ×
sign(di)(|di| − λ), i = 1, . . . ,N. Then

RREs(λ) = E‖d − d̂s(λ)‖2

(E‖d‖2)1/2
+ ω

E‖d̂s(λ)‖1

(E‖d‖1)1/2
, (A.1)

where ‖d̂s(λ)‖1 = ∑N
i=1 |d̂s,i(λ)|.

Theorem A.1. Consider the model stated in (3). Then we
have the following:

(a) the objective function RREs(λ) is minimized uniquely at
λ = λN,s, where

λN,s = .5 ·
(

E‖d‖2

E‖d‖1

)1/2

; (A.2)

the empirical estimate of λN,s,

λ̂N,s = .5 ·
( ∑N

i=1 d2
i∑N

i=1 |di|
)1/2

= .5 ·
(

ξ̂

l1

)1/2

, (A.3)

where l1 is the L1-norm of d.

(b) (λ̂N,s − λN,s)
w.p.1−→ 0.

Proof of Theorem 1

In this proof we first focus on the stochastic case first, then
address the modification of the proof for the deterministic case.
Let d2

(1) ≥ d2
(2) ≥ · · · ≥ d2

(N) be the ordered energies of wavelet
coefficients. Because

E(ξ̂ ) = E‖y‖2 = E‖d‖2

=
N∑

i=1

E(d2
i ) =

N∑
i=1

E
(
d2
(i)

)

≥
M∑

i=1

E
(
d2
(i)

) ≥ ME
(
d2
(M)

)
,

the inequality, E(d2
(M)) ≤ E(ξ̂ )/M, holds for M = 1,2, . . . ,N.

Therefore,

E‖y − f̂M‖2 =
N∑

i=M+1

E
(
d2
(i)

) ≤
N∑

i=M+1

E(ξ̂ )

i

≤ (N − M)E(ξ̂ )

M
.

For the deterministic case, replace the d(i)’s with θ(i)’s, re-
place E(ξ̂ ) with ξ = ‖f‖2 = ‖θ‖2, and delete the expectations.
The error bound is derived as stated in Theorem 1.

Proof of Theorem 2

Denote

Hi(λ) = E
(
I(|di| ≤ λ)d2

i

) =
∫ λ

−λ

t2
1

σ
φ

(
t − θi

σ

)
dt

and

hi(λ) = E
(|d̂h,i(λ)|0

) = E
(
I(|di| > λ)

)

= 1 −
∫ λ

−λ

1

σ
φ

(
t − θi

σ

)
dt,

where φ(x) = (2π)−1/2 exp(−t2/2), the standard normal den-
sity. It follows that

E‖d − d̂h(λ)‖2 =
N∑

i=1

E
(
di − I(|di| > λ)di

)2

=
N∑

i=1

E
(
I(|di| ≤ λ)d2

i

) =
N∑

i=1

Hi(λ)

and

E‖d̂h(λ)‖0 =
N∑

i=1

E
(|d̂i(λ)|0

) =
N∑

i=1

E
(
I(|di| > λ)

) =
N∑

i=1

hi(λ).

Then RREh(λ) can be written as

RREh(λ) =
N∑

i=1

Hi(λ)

E‖d‖2
+ 1

N

N∑
i=1

hi(λ).

Because of

dhi(λ)

dλ
= − 1

σ

[
φ

(
λ − θi

σ

)
+ φ

(−λ − θi

σ

)]
< 0

and

dHi(λ)

dλ
= λ2

σ

[
φ

(
λ − θi

σ

)
+ φ

(−λ − θi

σ

)]
= −λ2 dhi(λ)

dλ
,

we know that

dRREh(λ)

dλ
=

( −λ2

E(‖d‖2)
+ 1

N

) N∑
i=1

dhi(λ)

dλ
= 0

only if

λ = λN,h =
(

1

N
E‖d‖2

)1/2

.

Because the di’s are independently N(θi, σ
2) distributed,

Nλ̂2
N,h/σ

2 = ∑N
i=1 d2

i /σ
2 is χ2(N, δN) distributed with degree

of freedom N and noncentrality parameter δN = ∑N
i=1 θ2

i /σ 2.
It follows that E(λ̂2

N,h) = σ 2(δN/N + 1) = λN and var(λ̂2
N,h) =

σ 4(4δN + 2N)/N2 → 0, as N → ∞. Note that f (t) is continu-
ous on [0,T], and then max0≤t≤T | f (t)| = K ≤ ∞. Because the
DWT is orthonormal, |θi|, i = 1,2, . . . ,N, should be uniformly
bounded as N → ∞. Without loss of generality, we assume that
|θi| < K, i = 1,2, . . . ,N. Therefore,

lim
N→∞

N∑
i=1

θ2
i

i2
< K2 lim

N→∞

N∑
i=1

1

i2
< ∞,

and we know that

lim
N→∞

N∑
i=1

var(d2
i )

i2
< (4σ 2K2 + 2σ 4) lim

N→∞

N∑
i=1

1

i2
< ∞.

Thus, from the Kolmogorov theorem (Serfling 1980, p. 27), we

know that (λ̂N,h − λN,h)
w.p.1−→ 0; that is, the result (b) is true.
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To show the asymptotic normality of
√

N(λ̂2
N,h − λ2

N,h)/

σ (λ̂2
N,h), it is sufficient to verify the Lindeberg condition

(Serfling 1980, p. 30) that, for every ε > 0,

1

N

N∑
i=1

∫
|t2−µi|>ε

√
N
(t2 − µi)

2φ

(
t − θi

σ

)
dt → 0,

N → ∞, (A.4)

where µi = E(d2
i ) = θ2

i + σ 2. It follows that

∫
|t2−µi|>ε

√
N
(t2 − µi)

2φ

(
t − θi

σ

)
dt

= O

(∫
t2>ε

√
N

t4φ

(
t − θi

σ

)
dt

)

= O

(∫
t>ε1/2N1/4

t4φ

(
t − θi

σ

)
dt

)

= O

(
ε2Nφ

(
ε1/2N1/4 − θi

σ

))

= O

(
ε2N exp

{
−ε

√
N

2σ 2

})
.

Therefore, for every ε > 0, as N → ∞,

1

N

N∑
i=1

∫
|t2−µi|>ε

√
N
(t2 − µi)

2φ

(
t − θi

σ

)
dt

= O

(
ε2N exp

{
−ε

√
N

2σ 2

})
→ 0,

and we know that
√

N(λ̂2
N,h − λ2

N,h)/σ (λ̂2
N,h) is asymptotically

normal. Then, from the delta method, if (TN − ηN)/τN
d−→

N(0,1), then [h(TN) − h(ηN)]/[τNh′(ηN)] d−→ N(0,1), pro-
vided that h is a continuous function such that h′(ηN) exists
and h′(ηN) �= 0. In our situation, let TN = λ̂2

N,h, ηN = λ2
N,h,

τN = σN(λ̂2
N), h(η) = √

η, and h′(η) = 1/2
√

η; by applying the
delta method, we can get the results of (c).

Proof of Theorem A.1

Denote

Vi(λ) = E
(|d̂s,i(λ)|) = E

(∣∣I(|di| > λ) sign(di)(|di| − λ)
∣∣).

According to the intervals of di, the term I(|di| > λ) ×
sign(di)(|di| − λ) can be defined as

I(|di| > λ) sign(di)(|di| − λ) =



di + λ, di < −λ

0, −λ < di < λ

di − λ, di > λ.

Then

Vi(λ) = E
(|I(di > λ)(di − λ)|) + E

(|I(di < −λ)(di + λ)|)

=
∫ ∞

λ

|t − λ|
σ

φ

(
t − θi

σ

)
dt +

∫ −λ

−∞
|t + λ|

σ
φ

(
t − θi

σ

)
dt.

Because

E
(
di − d̂s,i(λ)

)2 = E
[(

di − I(|di| > λ) sign(di)(|di| − λ)
)2]

= E
[
I(|di| ≤ λ)d2

i

] + λ2E
[
I(|di| > λ)

]

= Hi(λ) + λ2hi(λ),

RREs(λ) can be written as

RREs(λ) =
(

N∑
i=1

Hi(λ) + λ2
N∑

i=1

hi(λ)

)/
E(‖d‖2)1/2

+
(

N∑
i=1

Vi(λ)

)/
E(‖d‖1)

1/2.

Because

dVi(λ)

dλ

= − λ

σ
φ

(
λ − θi

σ

)
−

∫ ∞

λ

1

σ
φ

(
t − θi

σ

)
dt + λ

σ
φ

(
λ − θi

σ

)

+ λ

σ
φ

(−λ − θi

σ

)
−

∫ −λ

−∞
1

σ
φ

(
t − θi

σ

)
dt

− λ

σ
φ

(−λ − θi

σ

)

= −E(|di| > λ)

= −hi(λ),

dRREs(λ)

dλ

=
[
−λ2

N∑
i=1

dhi(λ)

dλ
+ 2λ

N∑
i=1

hi(λ)

+ λ2
N∑

i=1

dhi(λ)

dλ

]/
E(‖d‖2)1/2

−
[

N∑
i=1

hi(λ)

]/
E(‖d‖1)

1/2

=
(

2λ

E(‖d‖2)1/2
− 1

E(‖d‖1)1/2

) N∑
i=1

hi(λ)

= 0,

only if

λ = λN,s = 1

2

(
E‖d‖2

E‖d‖1

)1/2

.

In addition, similar to the proof of result (b) of Theorem 2, we

know that (λ̂N,s − λN,s)
w.p.1−→ 0 from the Kolmogorov theorem

and Slutsky’s theorem; that is, result (b) is true.

[Received November 2002. Revised May 2005.]
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