
Distribution of the Length of the Longest Significance
Run on a Bernoulli Net and Its Applications

Jihong CHEN and Xiaoming HUO

We consider the length of the longest significance run in a (two-dimensional) Bernoulli net and derive its asymptotic limit distribution. Our
results can be considered as generalizations of known theorems in significance runs. We give three types of theoretical results: (1) reliability-
style lower and upper bounds, (2) Erdös–Rényi law, and (3) the asymptotic limit distribution. To understand the rate of convergence to the
asymptotic distributions, we carry out numerical simulations. The convergence rates in a variety of situations are presented. To understand
the relation between the length of the longest significance run(s) and the success probability p, we propose a dynamic programming algo-
rithm to implement simultaneous simulations. Insights from numerical studies are important for choosing the values of design parameters in
a particular application, which motivates this article. The distribution of the length of the longest significance run in a Bernoulli net is critical
in applying a multiscale methodology in image detection and computational vision. Approximation strategies to some critical quantities are
discussed.
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1. INTRODUCTION

We consider an m-by-n array of nodes—m rows and
n columns. Such an array can be considered a grid in a two-
dimensional rectangular region, [1,n] × [1,m]. Assume that
each node with coordinate (i, j),1 ≤ i ≤ n,1 ≤ j ≤ m, is associ-
ated with a Bernoulli( p) random variable Xi,j. If Xi,j = 1, then
the node is called significant; otherwise, it is nonsignificant.
Any two nodes (i1, j1) and (i2, j2) are connected if and only
if |i1 − i2| = 1 and | j1 − j2| ≤ C, with C a prescribed positive
integer. Define a chain of length � as a chain of � connected
nodes,
{
(i1, j1), . . . , (i1 + � − 1, j�) : | jk − jk−1| ≤ C, for 2 ≤ k ≤ �

}
.

A significance run refers to a chain with all nodes significant.
We call such a system a Bernoulli net. Figure 1 illustrates a
Bernoulli net and a significance run. We are interested in the
length of the longest significance run in this net, which is de-
noted by L0.

If L0 is considered a function of the number of columns, n,
then our theoretical results are generalizations of existing re-
sults in significance runs (Balakrishnan and Koutras 2002). This
becomes more evident as the theorems are described. In fact,
our theoretical results are highly parallel to the known results
in longest runs.

Our direct motivation is from a statistical detection prob-
lem. Arias-Castro, Donoho, and Huo (2003) proposed a method
called the multiscale significance run algorithm (MSRA) for
the detection of curvilinear filaments in noisy images. The main
idea is to construct a Bernoulli net. Each node has the value
of 1 (significant) or 0 (nonsignificant). Two nodes are defined
as “connected” if they are neighbors, that is, they can simulta-
neously cover a curve of interest. The length of the longest con-
nected significant nodes, called the longest significance run, is
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used as a test statistic. If the length exceeds a certain thresh-
old, then we conclude that there exists an embedded curve;
otherwise, there is no embedded curve. To formulate this as
a well-defined probability problem, we test the null hypothe-
sis of a constant success probability p against the alternative
hypothesis that some nodes, being on a filament with unknown
location and length, have a greater probability of success. Un-
der the alternative, L0 is more likely to exceed (i.e., be greater
than) a threshold, which, under the null hypothesis, cannot be
exceeded.

Apparently, the longest length (L0) depends on parameters
n,m,p, and C. In the approach of Arias-Castro et al. (2003),
the values of these parameters can be chosen. The question
is how to choose these parameters so that the power of the
test can be maximized. This becomes a design issue. The re-
lation between L0 and other parameters must be understood.
The choice of parameters in the approach of Arias-Castro et al.
(2003) is sufficient to guarantee a proof of asymptotic optimal-
ity; what we present here is a more precise result. This article
does not solve the entire problem, but it is one step in this di-
rection.

This article provides theoretical analysis as well as compu-
tational methods for the distribution of L0 under the null hy-
pothesis. In Section 2 we present product-type upper and lower
bounds for the cumulative distribution function of L0. We also
study the asymptotic behavior of the length L0 as n goes to in-
finity. We develop computational approaches in Section 3. In
Section 3.1 we design an approximation strategy to approxi-
mate the true value of the tail probability in the finite-sample
case; in Section 3.2 we provide a dynamic programming ap-
proach that allows us to study the relation between L0 and p
for a range of p simultaneously. We give detailed proofs for our
main theorems in Section 4. In Section 5, we present numerical
simulations to illustrate our theoretical results and to evaluate
the quality of the suggested approximations. In Section 6, we
address the connections between the proposed problem and the
methodologies used in image detection and computational vi-
sion. Finally, we provide a brief conclusion in Section 7.
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Figure 1. A Significance Run, Where C = 2. Hollow nodes are signif-
icant.

2. MAIN THEORETICAL RESULTS

Assume that the random variables Xi,j are independent. Our
first result gives upper and lower bounds for the probability of
P(L0 < �|n,m,C,p), where n, m,C, and p are parameters in a
Bernoulli net.

Theorem 1. Let P� = P(L0 = �|�,m,C,p) denote the prob-
ability that the length of the longest run is �, when there are
exactly n = � columns. We have

(1 − P�)
n−�+1 ≤ P(L0 < �|n,m,C,p)

≤ [1 − qmP�]n−�+1, (1)

where q = 1 − p.

The foregoing is motivated by reliability-focused work (e.g.,
Papastavridis and Koutras 1993). The techniques used to prove
this theorem are purely probabilistic and combinatoric. These
bounds are loose, especially when m is large. However, they are
useful in the proof of our strong convergence result presented
in Theorem 2.

The following lemma introduces a constant, ρ, which is im-
portant in the asymptotic distribution of L0.

Lemma 1. Define ρ� = P�/P�−1. There exists a constant ρ

(0 < ρ < 1) that depends only on m, C, and p, and not on n,
such that

lim
�→∞ρ� = ρ. (2)

We say a significance run is across if and only if it passes all
columns. The ratio ρ� is the conditional probability that there
is an across significance run for � columns, conditioning on
the fact that there is an across significance run in the previous
(� − 1) columns. We may call this the chance of preserving
across significance runs. The foregoing lemma shows that as
the number of columns goes to infinity, the chance of preserv-
ing across significance runs converges to a constant.

Now we consider an Erdös–Rényi type of result. As men-
tioned earlier, after fixing the parameters m,C, and p, we can
treat L0 as a function of the number of columns, n. For simplic-
ity, let L0(n) denote the longest run in such a Bernoulli net.

Theorem 2. As n → ∞,

L0(n)

log1/ρ n
−→ 1, almost surely. (3)

This result can be viewed as a generalization of the well-
known Erdös–Rényi law (see Petrov 1965; Erdös and Rényi
1970; Erdös and Revesz 1975), which proves that for a one-
dimensional sequence (m = 1), as n → ∞, (3) holds with ρ re-
placed by p. Note that when m = 1, P� = p� and ρ� = p. When
C = 0, P� = 1 − (1 − p�)m. In both cases, ρ = lim�→∞ ρ� = p.
Our result is true for a two-dimensional net, whereas the origi-
nal Erdös–Rényi law is proved for coin-tossing, which is a one-
dimensional sequence.

Using the Chen–Stein Poisson approximation, we prove the
following theorem, which gives the asymptotic distribution
for L0(n).

Theorem 3. There exists a constant A1 > 0, that depends
only on m, C, and p and not on n, such that for any fixed t,
as n → ∞, we have

P
(
L0(n) < log1/ρ n + t

) → exp{−A1 · ρt} as n → ∞.

The existence of constant A1 was established in the late part
of the proof of this theorem (Sec. 4.4). Because of the nature of
the proof, we do not have a specific formula for A1.

Note that the bounds presented in Theorem 1 are not
sufficient for deriving this asymptotic distribution. For one-
dimensional Bernoulli sequences, there are some similar re-
sults. A discussion of this is provided in Section 6.

The foregoing theorems provide a comprehensive description
on the asymptotic distribution of the length of the longest sig-
nificance run, L0, in a Bernoulli net. The proofs in this article
are tailored to the structure of a Bernoulli net. Many techniques
are novel and unique to this situation. Proofs of the foregoing
theorems are presented in Section 4.

3. MAIN RESULTS IN
ALGORITHMIC DEVELOPMENTS

The theoretical results are insightful. However, in the finite-
sample case, considering the experimental design task, more
numerically specific results must be obtained. We first pro-
vide some approximation techniques for the quantity P(L0 < �|
n,m,C,p), based on similar quantities designed for smaller
regions, for example, P(L0 < �|i�,m,C,p), P(L0 < �|n, j�,
C,p), or P(L0 < �|i�, j�,C,p), where i and j are positive in-
tegers. The main results are presented in (4)–(6) in Section 3.1.
Simulations are conducted to test how good these approxima-
tions are; these are presented in Section 5.4.

A more ambitious task is to illustrate, for fixed m and n, the
connection between L0 and the value of p. There is a naive ap-
proach: For each fixed value of p, run multiple simulations to
generate L0’s, then plot the histogram of L0. This approach is
repeated when the value of p is changed.

In Section 3.2 we propose a method that can run simulations
for all possible values of p simultaneously. Let node (i, j) be
associated with a random variable ti,j ∼ Uniform(0,1). Sup-
pose that we have a realization of the set of random vari-
ables {ti,j : 1 ≤ i ≤ n,1 ≤ j ≤ m}. For a probability p, node
(i, j) is significant if and only if ti,j ≥ 1 − p. A realization of
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a Bernoulli net is given accordingly. One can compute L0 for
this net, which is denoted by L0(p). A dynamic programming
algorithm, described in Section 3.2, shows that the stepwise
constant monotone nondecreasing function L0(p) can be com-
puted for all values 0 ≤ p ≤ 1 from one set of realizations of
{ti,j : 1 ≤ i ≤ n,1 ≤ j ≤ m} at one time. Moreover, the time to
run of this algorithm is no longer than mn(n + 1)(C + 1/2),
and the space requirement is no more than mn(n + 1)/2. This
is documented in Lemma 2. When the number of values taken
for p is large, the proposed simulation approach can save much
time, because it does not have to redo simulations for different
values of p.

Our numerical approach gives a nice way of illustrating the
empirical distribution of the length of the longest run. Figure 2
was computed using the aforementioned method. One easy ob-
servation is that for n = 64, when p > .25, L0(p) will reach the
maximum possible value (which is 64). In other words, one will
see a significance run across all of the columns.

3.1 Numerical Approximation

For large m or n, we derive the following approximations
using an approach similar to that of Wallenstein, Naus, and Glaz
(1994). We first consider the case when m is large. The longest
run in a region [a,b]× [c,d] represents the longest significance
run in the subtable {Xi,j : a ≤ i ≤ b, c ≤ j ≤ d}. For 1 ≤ k ≤ r1,
let Ak denote the event that the longest run is shorter than � in
the subregion [1,n]× [(k − 1)C�+ 1, (k − 1)C�+ 2C�], where
we assume that r1 = m/(C�) − 1 is an integer. We have

P(L0 < �|n,m,C,p)

= P
(
A1A2 · · ·Ar1

)

≈ P(A1)P(A2|A1)P(A3|A2) · · ·P
(
Ar1

∣∣Ar1−1
)
,

where

P(Ai|Ai−1) = Q(n,3C�)

Q(n,2C�)

and Q(n, iC�) = P(L0 < �|n, iC�,C,p), i = 2,3. Therefore,

P(L0 < �|n,m,C,p) ≈ Q(n,2C�)

[
Q(n,3C�)

Q(n,2C�)

]m/(C�)−2

. (4)

Similarly, we can derive an approximation for large n. Let
Bk denote the event that the longest run is shorter than � in the
subregion [(k − 1)� + 1, (k − 1)� + 2�] × [1,m],1 ≤ k ≤ r2,
where r2 = n/� − 1. We have

P(L0 < �|n,m,C,p)

= P
(
B1B2 · · ·Br2

)

≈ P(B1)P(B2|B1)P(B3|B2) · · ·P
(
Br2

∣∣Br2−1
)
.

Again,

P(L0 < �|n,m,C,p) ≈ Q(2�,m)

[
Q(3�,m)

Q(2�,m)

]n/�−2

, (5)

where Q(i�,m) = P(L0 < �|i�,m,C,p), i = 2,3.
When both n and m are large, we combine (4) and (5),

P(L0 < �|n,m,C,p) ≈ Q2

(
Q3

Q2

)n/�−2

, (6)

(a)

(b)

(c)

Figure 2. L0 versus p. (a) An image plot, the distribution of L0 (under
n = 64, m = 128, C = 3) as a function of p (0 < p < .3075). The intensity
of the image is proportional to the frequency of L0(n) (which is specified
by the y-coordinate) given a value of p (which is the x-coordinate) out
of 10,000 simulations. (b) A mesh plot of the same data as in (a). (c) For
p = .05, the histogram of L0 based on the same 10,000 simulations.
Note this can be viewed as one vertical slice from (a) or, similarly, a slice
from (b).
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where Qi = Qi2(Qi3/Qi2)
m/C�−2 and Qij = P(L0 < �|i�, jC�,

C,p), i, j = 2,3.

The values of Q(n, iC�), Q(i�,m), and Qij mentioned earlier
have smaller sample sizes. They can be obtained from simula-
tions by the approach described next.

3.2 A Dynamic Programming Approach to Study the
Relation Between L0 and p

Let L0(p) denote the length of the longest significance run
for a given probability p. We provide a dynamic programming
approach to compute L0(p) for the entire interval [0,1] for p.

Recall that ti,j ∼ Uniform(0,1),1 ≤ i ≤ n,1 ≤ j ≤ m, are iid
uniform random variables. For a given probability p, node (i, j)
is significant if ti,j ≥ 1 − p. Let Li,j(p) denote the length of the
longest significance run starting from the leftmost end of the
Bernoulli table and ending at node (i, j).

For the nodes in the first column, (1, j), j = 1,2, . . . ,m, we
have

L1,j(p) =
{

0 if p < 1 − t1,j

1 otherwise.

For node (i, j), it is not hard to verify that

Li,j(p) = 1{ti,j ≥ 1 − p} ·
{

1 + max
j′∈�( j)

Li−1,j′(p)
}
,

where �( j) = { j′ : | j′ − j| ≤ C,1 ≤ j′ ≤ m} denotes the set con-
taining neighboring indices of j. The function 1{ti,j > 1 − p} is
an indicator function.

When all of the Li,j(p)’s are available, the value of L0(p)

satisfies

L0(p) = max
i,j

Li,j(p).

The function Li,j(p) is piecewise constant and a nondecreasing
function of p. Define the break points in the functions Li,j(p) as

b(i,j)
� = min{p : Li,j(p) ≥ �}, � = 1,2, . . . ,n.

The value b(i,j)
� is the lower bound of the set when the value of

Li,j(·) is equal to �. For nodes in the first column, we have

b(1,j)
1 = 1 − t1,j ∀ j.

Because L1,j(·) ≤ 1, we can assume that

b(1,j)
� = 1 ∀ j and � > 1.

We can derive the updating scheme for the break points as

b(i,j)
1 = 1 − ti,j,

and, for � ≥ 2,

b(i,j)
� = max

(
b(i,j)

1 , min
j′∈�( j)

b(i−1,j′)
�−1

)
. (7)

Note that the foregoing gives a recursive formula with respect
to the length of the longest significance run � that ends at this
node and the column index i. Define

b∗
� = min{p : L0(p) ≥ �}.

It is not hard to see that

b∗
� = min

i,j
b(i,j)
� ∀� = 1,2, . . . ,n.

The foregoing gives an algorithm for computing L0(p) for the
entire interval 0 ≤ p ≤ 1.

We now consider the time and space requirements of the
proposed algorithm. For a node at column i, there are at most
i break points, because the maximum length of a significance
run up to this node is i. For each break point, according to (7),
there are at most (2C + 1) previous break points to compare.
Hence, it takes at most m(2C +1)i operations to compute break
points for all of the nodes in column i. The run time of the entire
algorithm is at most

n∑

i=1

m(2C + 1)i = m(2C + 1)n(n + 1)

2
.

Obviously, the space is no more than

n∑

i=1

mi = mn(n + 1)

2
.

We have proved the following lemma.

Lemma 2. Given a realization of variables {ti,j : 1 ≤ i ≤ n,

1 ≤ j ≤ m}, there is a dynamic programming algorithm for com-
puting the value of function L0(p) for all values 0 ≤ p ≤ 1
simultaneously. The computational time is upper-bounded by
mn(n + 1)(C + 1/2), and the required space is no more than
mn(n + 1)/2.

The foregoing can be used in carrying out simultaneous sim-
ulations. For each simulation, the results of break points (i.e.,
b∗
�’s, � = 1,2, . . . ,n) are arranged in a 1 × n vector. By con-

ducting N (e.g., N = 10,000 as in Fig. 2) simulations, we obtain
a matrix of size N × n. Given p, the probability P(L0(p) ≥ �)

is estimated by the fraction of b∗
�’s that are smaller than p. Fig-

ure 2 is generated in this way. Note that Figure 2 gives a nice
illustration of the relation between L0(p) and p.

4. PROOFS OF THE THEOREMS

Recall that P(L0 ≥ �|n,m,C,p) is the probability of L0 ≥ �

in an m × n Bernoulli net with a common success probability p.
Obviously, for a simple Bernoulli net with C = 0, we have

P(L0 ≥ �|n,m,0,p) = 1 − P(L0 < �|n,m,0,p)

= 1 − [
1 − P(L0 ≥ �|n,1,0,p)

]m
,

where P(L0 ≥ �|n,1,0,p) is the distribution of the longest run
in a one-dimensional Bernoulli sequence.

In what follows, some of the approaches and techniques for
handling one-dimensional longest run are generalized to handle
the two-dimensional problem.

4.1 Proof of Theorem 1

For the one-dimensional case (m = 1), the following simple
bound was originally developed in a reliability-focused work
(Papastavridis and Koutras 1993):

(1 − p�)n−�+1 ≤ P(L0 < �|n,1,0,p) ≤ (1 − qp�)n−�+1,

where q = 1 − p. An extension of the foregoing bounds to a
two-dimensional Bernoulli net yields Theorem 1.

To prove the theorem, we introduce the following notation:
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• Ei, the event that the longest run is shorter than � in the
subregion [i, i + �− 1]× [1,m],1 ≤ i ≤ n − �+ 1. That is,
the longest run among nodes {Xa,b : i ≤ a ≤ i + � − 1,1 ≤
b ≤ m} is shorter than �. The following statements can be
interpreted in the same way

• Fi, the event that the longest run is shorter than � in the
subregion [1, i] × [1,m], � ≤ i ≤ n

• A′, the complement of the set A
• Gi, the event that there is no significant node on the

(i − �)th column.

4.1.1 Upper Bound. For the upper bound, we have

P(L0 < �|n,m,C,p) = P(Fn)

= P(F�)

n∏

i=�+1

P(Fi)

P(Fi−1)

= P(F�)

n∏

i=�+1

[
1 − P(F′

i|Fi−1)
]
.

The foregoing are simply basic probability derivations. To
prove the upper bound, we need only to verify that

P(F′
i|Fi−1) ≥ P(F′

i|GiFi−1) · P(Gi|Fi−1)

≥ P� · P(Gi)

= (1 − p)mP�.

The first inequality is obvious. By definition, we can easily see
that P(F′

i|GiFi−1) = P�. To make the second inequality hold,
we need

P(Gi|Fi−1) ≥ P(Gi). (8)

The foregoing can be seen from

P(Fi−1) ≤ P(Fi−�−1) = P(Fi−1|Gi), (9)

where the first inequality is from the definition of the Fi’s and
the second equality is straightforward. The foregoing two in-
equalities (8) and (9) are equivalent. Hence we have proved the
upper bound.

4.1.2 Lower Bound. For the lower bound, we need to prove
that

P(E1 ∩ E2 ∩ · · · ∩ En−�+1) ≥
n−�+1∏

i=1

P(Ei). (10)

The properties of association among random variables,
described by Esary et al. (1967), will be used. Recall that
n random variables T1,T2, . . . ,Tn are associated if cov[ f (T),

g(T)] ≥ 0, for all nondecreasing functions f and g, for which
the expectations E( f ), E(g), and E( fg) exist. It is known that

• Nondecreasing functions of associated random variables
are associated [Esary et al. 1967, (P4)] and

• Independent random variables are associated (Esary et al.
1967, thm. 2.1).

Recall that the random variables Xi,j,1 ≤ i ≤ n,1 ≤ j ≤ m, are
independent, and hence they are associated. Consider a new
set of random variables, Di = 1{E′

i}, i = 1,2, . . . ,n − � + 1.

Evidently, 1{E′
i} is a nondecreasing function of random vari-

ables Xa,b, then i ≤ a ≤ i + � − 1,1 ≤ b ≤ m. Hence ran-
dom variables D1,D2, . . . ,Dn−�+1 are associated. According
to Esary et al. (1967, thm. 4.1), we have

P(D1 = 0,D2 = 0, . . . ,Dn−�+1 = 0)

≥ P(D1 = 0) · P(D2 = 0) · · ·P(Dn−�+1 = 0).

It is not hard to verify that P(D1 = 0,D2 = 0, . . . ,Dn−�+1 =
0) = P(E1 ∩ E2 ∩ · · · ∩ En−�+1) and P(Di = 0) = P(Ei), for
i = 1,2, . . . ,n − � + 1. Hence we have proved (10).

From all of the foregoing, we have the following result on the
lower bound:

P(L0 < �|n,m,C,p) = P(E1 ∩ E2 ∩ · · · ∩ En−�+1)

≥
n−�+1∏

i=1

P(Ei)

= (1 − P�)
n−�+1.

This proves Theorem 1.
A one-dimensional version of this result (i.e., when m = 1)

was given in by Muselli (1997), whose lemma 1 gave a pure
(and interesting) combinatoric proof. More advanced results in
one-dimensional situation have been given by Muselli (2000).
The application of association in this problem seems to greatly
simplify the proof.

4.2 Proof of Lemma 1

Without loss of generality, we need only to consider C ≥ 1.
The case of C = 0 is trivial and has been mentioned in Sec-
tion 2.

Let {xi, i = 1,2, . . .} be a Markov chain, where xi = (xi,1, . . . ,

xi,m) is a vector of length m. xi,j denotes the state of node (i, j).
We have xij = 1 if the length of the longest run starting from the
left end and ending at node (i, j) is equal to i; otherwise, xij = 0.
Let S be the set of all possible values of xi. The cardinality of S
is 2m.

For j = 1, . . . ,m, let �( j) = { j′ : | j′ − j| ≤ C,1 ≤ j′ ≤ m}
be the set containing neighboring indices of j. For two states
s1, s2 ∈ S, the transition probability is

Ps1s2 = pa(1 − p)b1{c = 0}, (11)

where

a =
m∑

j=1

1
{

max
j′∈�( j)

s1( j′) = 1, s2( j) = 1
}
,

b =
∑

j

1
{

max
j′∈�( j)

s1( j′) = 1, s2( j) = 0
}
,

and

c =
∑

j

1
{

max
j′∈�( j)

s1( j′) = 0, s2( j) = 1
}
.

Here s1( j′) and s2( j) denote the values of states s1 and s2 at
the j′th and jth rows. Obviously, c = 0 when s1 = s2. Therefore,
Pss > 0 ∀ s ∈ S.
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Letting π i
s = P{xi = s|xi �= 0}, we have

ρ� = P�

P�−1
= P{x� �= 0}

P{x�−1 �= 0}
= P{x� �= 0|x�−1 �= 0}
=

∑

s �=0

π�−1
s (1 − Ps0).

Now define another Markov chain, yi = {xi|xi �= 0}, with
state space S\{0}. The transition probability of the new Markov
chain is

P′
s1s2

= Ps1s2∑
s �=0 Ps1s

, s1, s2 ∈ S\{0}. (12)

It is obvious that P′
ss > Pss > 0. Therefore, the Markov chain is

aperiodic.
Moreover, it is easy to see that any other state is acces-

sible from the state (1,1, . . . ,1) in one step. Also, the state
(1,1, . . . ,1) is accessible from any other state in m steps, so
all of the states communicate with each other. Therefore, the
new Markov chain is irreducible.

Because the Markov chain {yi, i = 1,2, . . .} is finite, aperi-
odic, and irreducible, there exists limiting distribution πs such
that (Kulkarni 1995)

lim
�→∞π�

s = πs.

Therefore,

lim
�→∞ρ� =

∑

s �=0

πs · (1 − Ps0) = ρ. (13)

4.3 Proof of Theorem 2

For any real value x, we define

L0(x) = L0(
x�).
First, we prove that

L0(ek)

log1/ρ ek
−→ 1 as k → ∞ almost surely. (14)

To prove (14), we need to prove that, ∀ ε > 0,

P

(∣∣
∣∣

L0(ek)

log1/ρ ek
− 1

∣∣
∣∣ > ε infinitely often

)
= 0.

According to the Borel–Cantelli lemmas, it is sufficient to prove
that

∑

k

P

(∣
∣∣∣

L0(ek)

log1/ρ ek
− 1

∣
∣∣∣> ε

)
< ∞. (15)

From (2), ∀ δ > 0,∃�0 such that when � > �0,

ρ1+δ ≤ P�

P�−1
≤ ρ1−δ.

Therefore,

P�0ρ
(1+δ)(�−�0) ≤ P� ≤ P�0ρ

(1−δ)(�−�0).

From (1), we have
[
1 − a1ρ

�(1−δ)
]
ek�−�+1 ≤ P

(
L0(e

k) < �
)

≤ [
1 − a2ρ

�(1+δ)
]
ek�−�+1

,

where a1 = P�0ρ
−�0(1−δ),a2 = (1 − p)mP�0ρ

−�0(1+δ). We have

P

(∣∣∣∣
L0(ek)

log1/ρ ek
− 1

∣∣∣∣ > ε

)

= P
(
L0(e

k) > (1 + ε) log1/ρ ek)

+ P
(
L0(e

k) < (1 − ε) log1/ρ ek)

≤ 1 − {
1 − a1ρ

(1−δ)
(1+ε) log1/ρ ek�}
ek�−
(1+ε) log1/ρ ek�+1

+ {
1 − a2ρ

(1+δ)�(1−ε) log1/ρ ek�}
ek�−�(1−ε) log1/ρ ek�+1

≤ 1 − {
1 − a1ρ

(1−δ)[(1+ε) log1/ρ ek−1]}ek−(1+ε) log1/ρ ek+2

+ {
1 − a2ρ

(1+δ)[(1−ε) log1/ρ ek+1]}ek−(1−ε) log1/ρ ek−1
.

(16)

There exists k0 such that when k > k0,

(1 + ε) log1/ρ ek ≥ 2 and
(17)

(1 − ε) log1/ρ ek + 1 ≤ ek

2
.

Choose δ = 1
4ε; then

(1 − δ)(1 + ε) ≥ 1 + ε

2
and

(18)
(1 + δ)(1 − ε) ≤ 1 − ε

2
.

Substituting (17) and (18) into (16), we have

P

(∣∣∣∣
L0(ek)

log1/ρ ek
− 1

∣∣∣∣ > ε

)

≤ 1 − [
1 − a′

1e−(1+ε/2)k]ek + [
1 − a′

2e−(1−ε/2)k]ek/2
,

where a′
1 = a1ρ

−(1−δ) and a′
2 = a2ρ

(1+δ). Considering

lim
k→∞

[
1 − a′

1e−(1+ε/2)k]e(1+ε/2)k/a′
1 = e−1

for δ1 = e−1/2, there exists k1 such that when k > k1,
[
1 − a′

1e−(1+ε/2)k]e(1+ε/2)k/a′
1 ≥ e−1 − δ1

and
[
1 − a′

2e−(1−ε/2)k]e(1−ε/2)k/a′
2 ≤ e−1 + δ1.

Let b1 = e−1/2, and b2 = 3e−1/2. Then for k > k2 = max(k0,

k1), we have

P

(∣∣∣∣
L0(ek)

log1/ρ ek
− 1

∣∣∣∣ > ε

)

≤ 1 − b
a′

1e−kε/2

1 + b
(a′

2/2)ekε/2

2

≤
(

a′
1 ln

1

b1

)
e−kε/2 + b

(a′
2/4)kε

2 . (19)

Note that 1 − bx
1 ≤ −x ln b1 and ex ≥ x. We have

∞∑

k=1

P

(∣∣∣∣
L0(ek)

log1/ρ ek
− 1

∣∣∣∣ > ε

)
< ∞.

Therefore, (14) holds as k → ∞.
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Denote

fk = L0(ek)

log1/ρ ek
.

For any n, there exists kn such that ekn ≤ n ≤ ekn+1. Because
both L0(x) and log1/ρ x are increasing functions, we have

L0(e
kn) ≤ L0(n) ≤ L0(e

kn+1)

and

1

log1/ρ ekn+1
≤ 1

log1/ρ n
≤ 1

log1/ρ ekn
,

which, consequently, lead to (by multiplying the foregoing)

L0(ekn)

log1/ρ ekn+1
≤ L0(n)

log1/ρ n
≤ L0(ekn+1)

log1/ρ ekn
,

which is equivalent to

L0(ekn)

log1/ρ ekn

log1/ρ ekn

log1/ρ ekn+1
≤ L0(n)

log1/ρ n

≤ L0(ekn+1)

log1/ρ ekn+1

log1/ρ ekn+1

log1/ρ ekn
.

Therefore,

fkn

kn

kn + 1
≤ L0(n)

log1/ρ n
≤ fkn+1

kn + 1

kn
.

We have that

L0(n)

log1/ρ n
→ 1 when n → ∞.

From all of the foregoing, Theorem 2 is proved.

4.4 Proof of Theorem 3

The key idea is to apply the Chen–Stein Poisson approxima-
tion, which was described by Arratia, Gordon, and Waterman
(1990, sec. 3). Recall that Ei was defined in Section 4.1 as the
event that there is no length � significance run in the region
[i, i + � − 1] × [1,m], 1 ≤ i ≤ n − � + 1. Define random vari-
able Yi = 1{E′

i}. We have Yi = 1 if and only if there is a length �

significance run between the ith column and the (i + � − 1)st
column and Yi = 0 otherwise. (Recall that Di was defined the
same way as in a previous proof. We prefer to change the no-
tation because of a different use of these random variables.)
Define Zi = Yi

∏i−1
k=i−�+1(1 − Yk). For notational simplicity,

we assume Yk = 0 if k ≤ 0. The Zi is an indicator function
of whether or not there is a clump starting at the ith column.
Here “clump” is a concept used in the Poisson approximation
(see Arratia et al. 1990). A clump is made by � consecutive
columns containing an across-significance run, conditioning
on no previous clumps overlapping with the present one. Let
W = ∑n−�+1

i=1 Zi. The number of clumps is equal to W . The
main idea of the Poisson approximation is that the distribution
of the random variable W can be approximated by Poisson(λ),
where the Poisson parameter λ can be computed directly. De-
tails follow.

To verify the conditions for the Poisson approximation, we
define the neighborhood of α,1 ≤ α ≤ n, as Bα = {β : |α −β| <
2�,1 ≤ β ≤ n}. If β /∈ Bα , then clearly we have |α − β| ≥ 2�.
Now the random variable Zα depends only on columns from
α − � + 1 to α + � − 1. Similarly, random variable Zβ depends
only on columns from β − � + 1 to β + � − 1. Thus if β /∈ Bα ,
then Zα and Zβ are independent. It follows that b3 = 0. (Note
that constants b1,b2, and b3 are as defined in Arratia et al. 1990,
sec. 3.) For b1, we have

b1 =
n∑

α=1

∑

β∈Bα

E(Zα)E(Zβ)

=
n∑

α=1

∑

β∈Bα

P(Zα = 1)P(Zβ = 1)

<

n∑

α=1

P(Yα = 1)
∑

β∈Bα

P(Yβ = 1)

< n · 4�P2
�,

where P� is the constant defined in Theorem 1.
For b2, we have

b2 =
n∑

α=1

∑

β∈Bα,β �=α

E(ZαZβ)

= 2
n∑

α=1

∑

β∈Bα,β>α

E(ZαZβ)

= 2
n∑

α=1

∑

β∈Bα,β>α

P(Zα = 1 and Zβ = 1)

= 2
n∑

α=1

P(Zα = 1) ·
∑

β∈Bα,β>α

P(Zβ = 1|Zα = 1)

< 2
n∑

α=1

P(Yα = 1) ·
∑

α+�≤β<α+2�

P(Yβ = 1|Zα = 1)

= 2
n−�+1∑

α=1

P�

∑

α+�≤β<α+2�

P(Yβ = 1)

≤ 2n�P2
�.

In the foregoing, we used the following results:

• P� = P(Yα = 1), for 1 ≤ α ≤ n − � + 1, according to the
definition of P�.

• When α + � ≤ β , Yβ and Zα are independent, and we have
P(Yβ = 1|Zα = 1) = P(Yβ = 1).

• If α > n − � + 1, then we have P(Yα = 1) = 0.

Now we consider the Poisson parameter λ. Recall that λ =
E(W). It is easy to see that

λ ≈ nE(Z�) as n → ∞. (20)

For the expectation E(Z�), we can easily verify the following
bounds:
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1. E(Z�) ≤ P(Y� = 1) = P�.

2. E(Z�) = P(Y� = 1,Y�−1 = · · · = Y1 = 0)

> P(E′
� ∩ G2�−1)

= qmP�,

where G2�−1 and Ei are as defined in Section 4.1 and q =
1 − p.

Based on the foregoing, there is a constant A2, qm ≤ A2 ≤ 1,
which depends only on m,C, and p and not on n, and we have
E(Z�) = A2P�.

From the foregoing, for an arbitrarily small δ1 > 0, when n is
sufficiently large, we have

1 − δ1 ≤ λ

nA2P�

≤ 1 + δ1.

From Lemma 1, there exists a constant A3 > 0 for an arbi-
trarily small constant δ2 > 0, and when n is sufficiently large,
we have

1 − δ2 ≤ P�

A3ρ�
≤ 1 + δ2.

Define A1 = A2A3. From the foregoing, we have, for an arbi-
trarily small constant δ3 > 0,

1 − δ3 ≤ λ

nA1ρ�
≤ 1 + δ3.

In fact, δ3 = δ1 + δ2 + δ1δ2.
Recall that the Poisson approximation gives (Arratia et al.

1990, lemma 2)

|P(W = 0) − e−λ| ≤ min(1, λ−1)(b1 + b2 + b3).

Hence we have

∣∣P(L0(n) < �) − e−nA1ρ
� ∣∣ ≤ min

(
1,

1

nA1ρ�

)
6n�P2

�

≤ 1

A2
6�P�(1 + δ2)

≤ 6�
A3

A2
ρ�(1 + δ2)

2.

Now let � = log1/ρ n + t. One can easily observe that �ρ� → 0
and A1nρ� = A1ρ

t. Hence Theorem 3 is proved.

5. SIMULATIONS

In this section we present several numerical examples to il-
lustrate our theoretical results. We also present numerical com-
parisons of simulated distributions with their approximations.

5.1 Value of ρ

Table 1 gives the exact values of ρ for different p’s and m’s:
m = 4,8,10. The Markov chain approach that was described in
the proof of Theorem 1 is used. We write the matrix P = {Ps1s2},
which was defined by (12). The limiting distribution π = {πs}
is computed by solving the system of linear equations π = πP.
The value of ρ can be obtained from (13). It is not hard to show
that the algorithmic complexity is O(23m).

Table 1. The Values of ρ for Different Values of m and p, When C = 1

p

m .1 .2 .3 .4 .5 .6

4 .2444 .4564 .6341 .7758 .8804 .9482
8 .2654 .4955 .6869 .8363 .9383 .9876

10 .2691 .5022 .6958 .8467 .9486 .9930

5.2 Empirical Distributions of L0(n)

Figure 3 shows the simulated distributions of L0(n) for n =
16,32,64,128 when m = 64, C = 1, and p = .2. The distribu-
tion curves are highly skewed to the right, and the expectation,
E[L0(n)], moves toward ∞ approximately at the rate log1/ρ n.
Doubling the value of n makes the expectation E[L0(n)] shift-
ing to the right by a constant. Note that in the simulations,
E[L0(n)] was approximated by the sample average of the sim-
ulated L0(n)’s. Figure 4 shows the distribution of L0(n) for dif-
ferent values of m and C.

5.3 Convergence Rate to the Erdös–Rényi Law

We also study the convergence rate of (3). Fixing m = 8 and
C = 1 for n = 10,20, . . . ,100, Figure 5(a) plots the function
(as a function of n)

Ê[L0(n)]
log1/ρ(n)

,

where Ê[L0(n)] denotes the sample average of L0(n) from
10,000 simulations. In Figure 5(b), the foregoing sample av-
erage (Ê[L0(n)]) is replaced by the sample median. The fluctu-
ation in the latter case is due mainly to the granularity of the
L0(n); note that the median of the L0(n) can take only integral
values.

5.4 Approximation Formulas

Next we compare simulated probabilities P(L0 ≥ �|n,m,

C,p) with the approximations based on (4), (5), and (6). In

Figure 3. Simulated Distributions of L0(n) With m = 64, C = 1, and
p = .2 ( , n = 16; , n = 32; , n = 64; , n = 128). The num-
ber of simulations is 10,000. The horizontal axis contains the values
of L0(n). The vertical axis contains the sample proportions.
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(a) (b)

Figure 4. Distributions of L0 for (a) Different m’s With n = 16, C = 1, and p = .2 and (b) Different C’s With n = 128, m = 64, and p = .2. In each
plot the horizontal axis contains the values of L0(n), and the vertical axis contains the sample proportions [(a) , m = 16; , m = 32; ,
m = 64; , m = 128; (b) , c = 1; , c = 2; , c = 3; , c = 4].

Tables 2–4, “S” stands for the simulated probabilities and
“A” stands for the approximated probabilities. In Table 2 the
approximated P(L0 ≥ �|16,m,1,p) requires two simulated
probabilities, P(L0 ≥ 8|16,2�,1,p) and P(L0 ≥ 8|16,3�,1,p).
Similarly, in Table 3 the approximated P(L0 ≥ �|n,16,1,p)

also requires two simulated probabilities, P(L0 ≥ �|2�,16,1,p),
and P(L0 ≥ �|3�,16,1,p). In Table 4 the approximated P(L0 ≥
8|n,m,1,p) requires four simulated probabilities, P(L0 ≥
8|16,16,1,p), P(L0 ≥ 8|24,16,1,p), P(L0 ≥ 8|16,24,1,p),
and P(L0 ≥ 8|24,24,1,p). In all of the foregoing cases, we
have C = 1, and we allow p to vary. We observe that the ap-
proximated probabilities are close to the simulated probabili-
ties.

6. RELATED WORKS AND DISCUSSION

6.1 Our Motivation

As mentioned earlier, our major motivation is from an im-
age detection project. Figure 6 gives such an illustration. For
computational details we refer to work of Huo, Chen, and
Donoho (2003), which is also downloadable from the second
author’s publication website, http://isye.gatech.edu/~xiaoming/
publication/. Here we provide a brief summary of the essence
of the method.

Consider tilted rectangles, as shown in Figures 6(b) and 6(d).
They are called axoids (Huo et al. 2003), which are multiscale
objects with different widths and heights, taking different orien-
tations. They are a part of a multiscale methodology developed

(a) (b)

Figure 5. Plots of (a) Ê[L0(n)]/log1/ρ (n) Against n for a Range of p’s and (b) Median(L0(n))/log1/ρ (n) Against n for a Range of p’s ( , p = .05;
, p = .1; , p = .35; , p = .4).

http://isye.gatech.edu/~xiaoming/publication/
http://isye.gatech.edu/~xiaoming/publication/
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Table 2. Comparisons of the Simulated P(L0 ≥ � | n = 16, m,C = 1, p)
With Approximations by (4) When m = 32, 64, 128 and � = 4, 8

� = 4 � = 8

p = .05 p = .10 p = .20 p = .25

m S A S A S A S A

32 .0451 .0512 .4294 .4310 .2039 .2067 .5503 .5439
64 .0953 .1015 .7012 .6815 .3779 .3797 .8054 .7969

128 .1868 .1941 .9045 .9002 .6198 .6207 .9634 .9597

by Arias-Castro et al. (2003). They are multiscale, so that the
proposed methodology can automatically be adapted to the un-
known smoothness of the underlying curve. Note that a faint
curve can barely be seen in Figure 6(c).

For each axoid, one considers a statistic that is defined on
this axoid. We simply ask: Is this axoid likely to overlap with
the underlying curve? If the answer is yes, then this axoid is
called significant. Two axoids are connected if they can simul-
taneously cover a geometric curve. (A precise definition of cov-
ering was provided in Arias-Castro et al. 2003.) Each axoid can
be mapped to a node in a Bernoulli net. Hence the connected
significant axoids can be associated with a significance run in
the Bernoulli net. The major intuition is that if the image is
white noise, then the significant nodes tend to be randomly scat-
tered, and hence the length of the longest significance run tends
to be small; however, if there is an embedded curve, then the
significant nodes tend to be concentrated around the location of
this curve, and hence the length of the longest significance run
tends to be large. Based on this intuition, a hypothesis testing
scheme can be developed.

Note that the axoids of Huo et al. (2003) and Arias-Castro
et al. (2003) may overlap, and hence the derived statistics may
be dependent. The assumption that the Xi,j’s are independent at
the beginning of this article is a convenient simplification for
obtaining the present results. Extending the current results to
the case where the random variables Xi,j could be dependent
will be an interesting topic for future work.

Our result may have an impact on recent advances in com-
putational vision. Moisan, Desolneux, and Morel (2000) con-
sidered how likely it is for some basic geometric objects to be
aligned in an image. Only those that are very unlikely to be
aligned at random are meaningful to the image content. When
the geometric objects can be mapped into a two-dimensional
network, the distributional knowledge regarding L0(n) pro-
vides information on how unlikely the observed image is to
be generated at random. Hence it provides a way to quantify
the threshold of “meaningfulness.” Obviously, to apply our re-
sults, a substantial amount of formulation and derivation will
be required. The idea of using a connectivity pattern in vision
research was also explored by, for example, Sha’Ashua and

Table 3. Comparisons of the Simulated P(L0 ≥ � | n, 16, 1, p) With
Approximations by (5) When n = 32, 64, 128 and � = 4, 8

p = .15 p = .20 p = .25 p = .30

n S A S A S A S A

32 .0446 .0474 .2391 .2469 .6116 .6206 .9066 .9018
64 .0948 .1028 .4597 .4692 .8785 .8831 .9952 .9937

128 .1974 .2040 .7200 .7363 .9884 .9889 1.0000 1.0000

Table 4. Comparisons of the Simulated P(L0 ≥ 8 | n, m, 1, p) With
Approximations by (6)

p = .08 p = .12 p = .16 p = .20

n m S A S A S A S A

32 32 .0011 .0018 .0223 .0294 .1397 .1502 .4576 .4791
64 .0033 .0046 .0485 .0683 .2821 .3006 .7121 .7719

128 .0065 .0102 .0950 .1414 .4840 .5263 .9188 .9563

64 32 .0034 .0042 .0486 .0517 .2867 .2679 .7388 .7549
64 .0059 .0102 .1057 .1465 .5125 .5184 .9380 .9590

128 .0128 .0220 .2018 .2889 .7769 .7796 .9970 .9989

128 32 .0070 .0090 .1123 .1321 .5251 .5006 .9435 .9457
64 .0153 .0212 .2112 .2837 .7789 .7717 .9969 .9987

128 .0275 .0452 .3795 .5121 .9555 .9523 1.0000 1.0000

Ullman (1988). Moisan et al. (2000) have provided some useful
references.

In summary, the results in this article potentially provide a
criterion for image feature extraction.

It will also be interesting to derive similar results for a net-
work that is more complicated than a two-dimensional array, for
example, a k-dimensional array with certain connectivity con-
ditions, where k > 2. One may also be interested in studying
a random network in another geometric setting, for example, a
connected net of equally spaced points on a sphere.

6.2 Relation to the State of the Art

Over the years there has been considerable research work on
the length of the longest success run L0(n) in n Bernoulli trials,
whose extensive applications include signal detection, reliabil-
ity, quality control, radar astronomy, DNA sequence analysis,
startup demonstration testing, and others. Various expressions
for the exact distribution of L0(n) have been given by, among
others, Arratia et al. (1990), Balakrishnan and Koutras (2002),

(a) White noises (b) Longest run in white noises

(c) With an underlying feature (d) Longest run for (c)

Figure 6. Showcase of Using the Length of the Longest Significance
Run to Determine Whether There Is an Embedded Filament. (a) White
noise. (b) The corresponding longest significance run. (c) A noisy image
with an underlying curve. (d) The corresponding longest significance
run.
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Burr and Cane (1961), and Gibbons (1971). We found that a
summary given by Balakrishnan and Koutras (2002, p. 20) is
very helpful. As mentioned earlier, in our formulation, these re-
sults are equivalent to the case when C = 0 and m = 1. In this
sense, we generalized the existing results.

Theorem 3 effectively says that the L0(n) converges to a well-
known extreme value distribution. For a quick reference on ex-
treme value distribution, we refer to http://mathworld.wolfram.
com/ExtremeValueDistribution.html. It is well known [e.g., Fu,
Wang, and Lou 2003, eq. (1.5)] that for a one-dimensional
Bernoulli sequence, we have

P
(
L0(n) − ⌊

log1/p n
⌋

< t
) = exp

{−nqp
log1/p n�+t} + o(1).

Historically, it is proven by using the generating function
method initiated by Goncharov (1944). Note that when A1 = q,
this is a special case of Theorem 3. We found that the literature
regarding the limiting distribution of runs in other scenarios has
advanced significantly. See Chan and Lai (2003) for a recent in-
spiring general result.

6.3 Proof Techniques

Our proof of Theorem 3 is based on the Chen–Stein Poisson
approximation. There are many ways of using the Poisson ap-
proximation. Our approach is the same as that used by Arratia
et al. (1990). Notice that there are new developments in this
line of methodology; we find that the article of Barbour and
Chryssaphinou (2001) provides a good starting point. For us,
the method of Arratia et al. (1990) turned out to be sufficient.

7. CONCLUSION

Asymptotic distributions have been derived for the length of
the longest significance run in a Bernoulli network. These gen-
eralize the known results in longest runs. Efficient numerical al-
gorithms are designed to study the relation between the length
of the longest run and the values of parameters in the finite-
sample case, as well as the convergence rates to the limit dis-
tributions. Our results provide insights in algorithmic designs
in applications such as image detection and computational vi-
sion.

[Received July 2004. Revised April 2005.]
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