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ABSTRACT

We consider the problem of recovering a binary image consisting
of many filaments or linear fragments in the presence of severe
binary noise. Our approach exploits beamlets—a dyadically or-
ganized, multiscale system of line segments—and associated fast
algorithms for beamlet analysis and complexity-penalized model
fitting. Simulation results demonstrate the effectiveness of the
method.

1. INTRODUCTION

Real-world imaging often presents problems where the object of
interest consists of many filaments and linear fragments – think of
road networks or river networks seen from above, or boundaries of
objects in computer vision.

In this paper, we consider a model for problems of this kind,
where the object of interest is a binary image containing many
linear or curvilinear fragments and there is severe binary noise de-
grading the image. One can think of this problem as arising when
we must process the output of a pixelwise detector, where each
pixel-level detector conducts a hypothesis test for presence or ab-
sence of a feature. For example, this could arise in hyperspectral
imaging where the pixel-level computation involves analyzing a
spectrum of reflected light at that pixel and testing for spectral
similarity to a known substance, but the pixel-level test has a rather
high error rate. Other examples include processing noisy infrared
imagery of a scene by an edge detector, setting a threshold on the
amplitude of the edge detector, and obtaining a binary image of
pixel-level ‘edge-detections’. For helpful literature, see for exam-
ple [7, 8].

State-of-the-art methods for image processing in such settings
generally have two components: (1) local feature identification and
(2) global selection and fusion. Often, the underlying features are
assumed to be obvious at pixel level, so that it is not difficult to
obtain an effective local feature detector, and the problem of in-
tegration and fusion is correspondingly easy. We study a much
harder case here, where the image is so severely noisy that when
operating at pixel level, it is not possible to tell if it is a part of
a larger-scale linear or curvilinear feature or not; and attempts to
fuse local decisions into global recognition are doomed. We de-
velop in this paper a multiscale approach which automatically op-
erates at the smallest scale where the underlying features are ex-
tractible in a statistically reliable manner, and which can therefore
detect features in far noisier environments than possible using the
current state of the art.

Our method is based on beamlet analysis, as defined and delin-
eated in [5]. Beamlets provide a multiscale dictionary of line seg-
ments having a range of orientations, locations, and scales, obey-
ing a natural tree hierarchy and having a natural multiscale graph
structure. Beamlet analysis is the operation of integrating an im-
age along each of these line segments, and is best viewed, on first
acquaintance, as a kind of multiscale Radon or Hough transform.
Beamlet analysis is essentially comparing the image with a rich set
of linear features at all scales, orientations, and locations and stor-
ing the results in a well-organized data structure. Our method ex-
ploits this analysis by further processing the data structure, looking
for beamlet coefficients which are unusually large given the num-
ber of pixels involved and the ambient noise level. The method
returns a collection of beamlets, which can be viewed as providing
a reconstructed image extracted from the noisy image.

The reconstruction is in fact the solution of a formal optimiza-
tion problem seeking the minimum of a complexity-penalized like-
lihood; informally, we seek a faithful description of the data with
low complexity (i.e. using few beamlets). The optimization prob-
lem is framed using the natural tree hierarchy of the beamlet sys-
tem and, by applying ideas from dynamic programming, can be
solved rapidly using a tree-pruning algorithm.

The method intrinsically carries out an adaptive multiresolu-
tion analysis, since the beamlets used in the analysis occur at all
possible scales and locations and the beamlets used in the recon-
struction are selected by a statistical principle guaranteeing that at
each location, the beamlets (if any) which are extracted, have the
smallest scale where the results are statistically reliable.

This is a part of a bigger effort to analyze the potential of us-
ing beamlets, and their tree and graph structure to derive reliable
methods for solving problems detection and extraction of curvi-
linear objects at very challenging noise levels. In this project, a
strategy that is based on multiresolution analysis helps to solve a
problem which is otherwise seemingly hopeless. We have here
restricted ourselves to the analysis of binary images. Similar ap-
proaches can be derived for more complex imagery, with Synthetic
Aperture Radar images and color digital images being promising
areas for attention.

A related idea for linear feature extraction in a different (Gaus-
sian) noise model was described in [6], together with some illus-
trations. The statistical modeling approach and the idea of mini-
mizing a penalized distortion function has a precursor in [3], where
the idea was to extract regions and their boundaries rather than fil-
aments and curvilinear fragments, and the noise model was Gaus-
sian rather than Bernoulli. Novel features in this work include the



statistical model, and the choice of penalty parameter by the prin-
ciple of controlled false alarm rate in each scale.

In the simulations, when a high proportion of the pixels in a
binary image are contaminated (switching from0’s to 1’s or vice
versa), the model based method can still reliably extract most of
the underlying linear features.

In this paper, in Section 2 the beamlet-based statistical models
are described. In Section 3 the penalization is determined so that
the false alarm rates are controlled. In Section 4, two represen-
tative simulations are reported. In Section 5, the advantages and
limitations of this method are discussed. Finally, we conclude in
Section 6.

2. BEAMLET BASED MODEL

The design of thebeamlet dictionaryis provided in detail in [5],
where relations to earlier work, for example with multiscale Radon
transforms, was described; the reader should consult that work for
the details we omit here. There are three steps in designing the
beamlet dictionary: (1) partitioning the image domain into dyadic
squares at all scales, (2) marking the boundaries of squares with
equispaced vertices at pixel spacing and (3) defining beamlets as
line segments connecting pairs of vertices within a dyadic square.
Here we consider a squared image with dyadic length (the number
of pixels on each row or in each column is an integral power of
2). Within a square, adigital beamletis a set of pixels that are
aligned with a line segment which begins and ends at the boundary
of this square. Given a line segment, the selection of the pixels are
determined by following Bresenham’s algorithm [1]. More details
on the digital beamlets are provided in a companion paper [2].

A Recursive Dyadic Partition (RDP) of the image domain is
any partition arrived at by starting with the whole image domain
and recursively decomposing any part of an existing RDP into
dyadic squares based on the dyadic subdivision principle of replac-
ing a square by four similar squares of half the size; for fuller dis-
cussion and pictures, see [5]. The idea will be familiar asquadtree
decompositionto many readers. A beamlet-decorated RDP (BD-
RDP) is an RDP in which some of the terminal nodes of the parti-
tion are decorated by beamlets associated with those squares.

Our statistical model specifies that the pixels in the image have
a statistical distribution based on Bernoulli trials, in which the
probability of “1” differs from pixel to pixel. Given a beamlet-
decorated RDP, the model states in an undecorated square, we
have a statistically homogeneous i.i.d. Bernoulli with parameter
1/2 − ε; in a decorated square, we have such a noise in all pixels
exceptalong a single digital beamlet associated with that square,
where the Bernoulli parameter is1/2 + ε. Hence, on pixels be-
longing to the beamlet decoration, there is an elevated probability
of “1”. Note that in our model, no pair of beamlets overlaps. The
beamlets can have various lengths, depending on the size of the
subsquares that they reside on.

Each BD-RDP defines a statistical model, so there is a huge
number of possible models for binary data. Our goal will be to
fit to a given binary image a good model from the collection of
all BD-RDP’s. In short, we have converted the problem of recov-
ering the underlying filaments and linear fragments into a model
selection problem.

We propose aComplexity-Penalized Distortion(CPD) approach
for estimation in the above setting. Suppose{S ∈ P} is the col-
lection of subsquares making up a RDPP, and thatP ′ is the
collection of decorated subsquares. For such a decorated square

S′ ∈ P ′, let bS′ denote the digital beamlet that decoratesS′; for
convenience, we setbS = ∅ if S 6∈ P ′. A statistical model (de-
noted bym) can be written asm = {(bS′ , S′ ∈ P ′),P}. The
complexity penalized distortion is

CPD(m,λ) = ‖y − 1m‖0 +
∑
S∈P′

λ(S), (1)

wherey stands for the observed image,1m is the indicator of the
pixels in the model (i.e. pixels in the decorations),‖ · ‖0 measures
the number of nonzero entries, andλ(S) is the penalty associated
with squareS. Note that binary images are considered, so the`0
norm of two binary images is sufficient to measure the distortion.

The second term in the above equation is the penalty term,
which is intentionally decomposed as functions of subsquares. It is
reasonable to assume thatλ(S) is only a function of the size of the
subsquareS, and also of the fact that it is decorated. Our choices
of λ’s are determined by the size of the subsquares, which are also
the scales of the corresponding beamlets. Note that this realizes
a scale-dependent penalization, which is in some ways similar to
scale-dependent thresholding in wavelet analysis. The model that
minimizes the function CPD(m,λ) is our Complexity-Penalized
Distortion estimate.

In a binary image, if the distortion of a particular pixel follows
the Bernoulli distribution (it has the chancep to switch to another
value and the chance1−p to stay at the same value), the term‖y−
1m‖0 is proportional to the logarithm of the likelihood function
given thatm is the true underlying model. Hence the CPD is in
fact a complexity-penalized likelihood criterion; with suitable re-
interpretation it can be viewed as a kind of maximum a posteriori
estimator under a certain random beamlet model.

Since the penalty function can be decomposed as functions
of subsquares of a RDP, the penalty is additive according to the
quadtree structure given by RDPs. So an algorithm that has the
flavor of theBest Orthonormal Basiscan be deployed. Since the
algorithm is a bottom-up tree pruning algorithm, it will be fast.
Its order of complexity is roughly equal to the size of the binary
image.

The functionλ is chosen based on controlling thefalse alarm
rate. This will be addressed in the next section.

3. CHOICE OF PARAMETER

Supposes is a subsquare with siden(s). Let λ(s) = 0, if there
is no beamlet ins. Let ys denote the subimage that resides on the
subsquares. Recall that we want to choose a functionλ which is a
function of the size,n(s), of the subsquare. In this fixed subsquare,
the probability of false alarm is given by

f. a. r. = P{∃b ⊂ s : ‖ys − 1b‖0 + λ(n(s)) < ‖ys‖0},

whereb is a beamlet ins. Moreover, we have

f. a. r. = P{∃b ⊂ s : λ(n(s)) < 2(#ones onb)− ‖b‖0}
= P{λ(n(s)) < max

b⊂s
[2(#ones onb)− ‖b‖0]}.

When the switching probabilityp of each pixel is given, in a fixed
subsquares, the distribution of the statisticmaxb⊂s[2(#ones onb)−
‖b‖0] can be derived. Hence a value ofλ(n(s)) can be chosen so
that the false alarm rate is controlled. We determined the values of
λ via simulations. More details on the analysis of the distribution
of this maximum will be reported later.



Since a beamlet at scalen—which is the sidelength of the sub-
square this beamlet residing on—can be decomposed as two or
three smaller beamlets at scalen/2, it is desirable for the function
λ to satisfy the condition

2λ(n/2) > λ(n),

so that the optimal solution always chooses a coarser scale ele-
ments, instead of its superposition. The functionλ that is chosen
based on the controlled false alarm rate satisfy the above inequal-
ity. As a matter of fact, we observe the following: forp < 1/2 and
n > 4,

λ(n) ∝ c log2(n),

wherec is a constant that depends onp. A verification of this result
will be studied later.

4. SIMULATIONS

The results of two simulations are shown in Figure 1 and Figure
2. In both figures, the top are the original images, which are128
by 128 binary images. In the distorted images (the middle ones),
20% of the pixels switch values (from0 to 1, or from 1 to 0).
The bottom images are the estimates that are from the beamlet
model based approach. We can see that the estimates apparently
preserve a significant amount of the original features. There are
a few mis-detections. But compared to the distorted images, the
false identification is well-controlled.

5. DISCUSSION

There are some desired properties of this approach. First since the
objective function is additive in a quadtree structure, the solution
can be efficiently computed through a tree-pruning algorithm. So
this approach has a fast algorithm. Note that this is different from
many methods that relies on a Markovian Random Field model,
which is usually expensive to find the optimal solution. Second,
in the contaminated binary image model that we study, it performs
very well in the sense that most of the distortion has been sup-
pressed. Third, this method automatically carries out a multireso-
lution analysis.

This approach is not perfect. For example, from the simula-
tion results, the method fails at the connecting points of multiple
linear features. This is due to the non-overlapping property in the
BD-RDP model. Also due to the structure of RDP and the crite-
rion of controlling false alarm rate, if the “true” statistical model
contains fine scale beamlets, then in our approach, the fine scale
components will be lost. However as stated earlier, our method
automatically starts working at the finest scale that the problem is
solvable.

6. CONCLUSION

A method that is based on multiscale feature extraction is proposed
to identify linear features in a severely distorted binary image.
Simulation demonstrates the effectiveness of this approach. The
proposed method has low computational complexity. The funda-
mental idea that is embedded in the algorithmic approach could be
used to generate new and efficient methods in many other situa-
tions where the Signal to Noise Ratio is extremely low.
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Figure 1: An example of denoising.
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Figure 2: The second example of denoising: a star pattern.
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