

Investigation of Rocket Signatures Collected by Smartphones

Sarah Popenhagen¹, Milton Garces¹

¹University of Hawaii at Manoa

Goal

Identify and annotate unique features of rocket launch, trajectory, and chronology to develop missile detection capabilities.

Data

Smartphones ≈25km from launch collected audio data at 800Hz.

Method

Peaks in data are used to identify events, which are classified as launch sequences or anomalies by their characteristics.

Discussion

Launch signatures of rocket types are similar but differentiable.

Anomalies with high SNR are distinguishable.

Future work

Identify and annotate features of launch and anomaly signatures in greater detail.

References

Garcés, Milton. Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures. *Entropy*. 2020; 22(9):936.

Investigation of Rocket Signatures Collected by Smartphones

Sarah Popenhagen¹, Milton Garces¹
¹University of Hawaii at Manoa

Goal

Identify and annotate unique features of rocket launch, trajectory, and chronology to develop missile detection capabilities.

Data

Smartphones ≈25km from launch collected audio data at 800Hz.

Method

Peaks in data are used to identify events, which are classified as launch sequences or anomalies by their characteristics.

Discussion

Launch signatures of rocket types are similar but differentiable.

Anomalies with high SNR are distinguishable.

Future work

Identify and annotate features of launch and anomaly signatures in greater detail.

References

Garcés, Milton. Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures. *Entropy*. 2020; 22(9):936.

Investigation of Rocket Signatures Collected by Smartphones

Sarah Popenhagen¹, Milton Garces¹
¹University of Hawaii at Manoa

Goal

Identify and annotate unique features of rocket launch, trajectory, and chronology to develop missile detection capabilities.

Data

Smartphones ≈25km from launch collected audio data at 800Hz.

Method

Peaks in data are used to identify events, which are classified as launch sequences or anomalies by their characteristics.

Discussion

Launch signatures of rocket types are similar but differentiable.

Anomalies with high SNR are distinguishable.

Future work

Identify and annotate features of launch and anomaly signatures in greater detail.

References

Garcés, Milton. Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures. *Entropy*. 2020; 22(9):936.

2.0

2.5