SUBMAXIMAL SOLEUS FORCE LENGTH CHARACTERISTICS WITH AGING

Lindsey H. Trejo¹, Jordyn N. Schroeder¹, and Gregory S. Sawicki¹
¹School of Mechanical Engineering and Bio Sciences, Georgia Institute of Technology, Atlanta, GA, USA
email: ltrejo@gatech.edu

Introduction
Older adults use more energy to walk than young adults. Age-related changes in muscle-tendon units (MTU) could cause reduced muscle power and force economy. For example, reduced Achilles tendon stiffness in older adults leads to shorter, less economical muscle operating lengths [1]. But the muscle itself may also be a factor; loss of type 2 fiber percentage and muscle mass as well as increased connective tissue stiffness could all contribute to a reduced force output per muscle activation in old versus young adults and lead to increased metabolic energy expenditure. Comparative literature has shown that in healthy, young muscle there is a leftward shift of optimal muscle length with increasing activation [2] affording a potential mechanism to keep muscles operating in proximity to optimal length (l₀) despite an average shortening against series elastic tissues during more demanding tasks (e.g., faster walking). Here, we sought to examine whether this activation dependent shift in optimal length is retained in aged human soleus muscle. We hypothesized that older adults would have stiffer muscles and a smaller leftward shift in optimal length with increasing activation.

Methods
Two young (1M, 1F, 20 ± 1.4 years), and two older adults (1M, 1F, 66.5 ± 2.1 years) performed a minimum of 3 plantarflexion (PF) contractions at 5 ankle joint angles (20°PF, 10°PF, 0°, 15° dorsiflexion (DF), maxDF) and 4 activations (0, 33, 66, 100% of max voluntary contraction [MVC]). Torque at the ankle was measured using a dynamometer while prone with the knee bent 120° to isolate the soleus muscle. Muscle activity and muscle lengths of the soleus were measured using electromyography (EMG) and ultrasound respectively. MVC were performed with visual torque feedback while 33% and 66% contractions were performed with EMG feedback. Two minutes of rest were taken between every contraction. For the passive curve, length and length were measured in increments of 5° from 10°PF to maxDF after 45 seconds of resting in this position to mitigate history-dependent effects. Soleus active muscle force (Fₐₜ) was calculated as follows.

\[F_{\text{act}} = \frac{\tau_{\text{total}} - \tau_{\text{pedal}}}{r_{\text{ank}} \cdot \cos (\theta_{\text{penn}})} - F_{\text{pass}} \]

\(\tau_{\text{total}} \) is total torque, \(\tau_{\text{pedal}} \) is pedal torque, \(r_{\text{ank}} \) is ankle moment arm, \(\theta_{\text{penn}} \) is pennation angle, and \(F_{\text{pass}} \) is passive force at the length during contraction. A 2nd order polynomial was least squares curve fit to the data for the active curves, and an exponential curve fit for the passive data [2]. Muscle stiffness was calculated as the slope at l₀.

Results and Discussion
As expected, the normalized muscle stiffness was greater for older adults (Y: 0.118, O: 0.541). Contrary to our hypothesis, both Y and O adults exhibited a rightward shift in l₀ at the highest activations (Y:100%: 1.0, 66%: 0.896, 33%: 0.888, O: 100%: 1.0, 66%: 0.903, 33%: 0.943). The location of l₀ is highly dependent on the curve fitting method and the amount of data on the descending limb. Previous literature has reported some participants cannot reach the descending limb which could explain our observed opposite shift in l₀ compared to other studies [2]. By combining data from more participants and further refining our fitting procedure, we hope to verify our measured shifts in l₀. The absolute force-length curves for the older group had lower maximum force (Y: 6155.5 N, O: 2904.1 N) and shorter optimal length (Y: 49.5 mm, O: 40.65 mm). Lower maximum force with aging has been reported previously.

Significance
Characterizing age-related shifts in muscle FL curves is a critical aspect to understanding the increase in energy cost of walking for older adults and may inform training interventions and the design of assistive devices to address the mechanical and metabolic effects of aging.

Acknowledgments
NIH NIA Grant (R0106052017), Alfred P. Sloan Foundation Graduate Scholarship, and Goizueta Foundation Fellowship

References
[1] B. Krupenevich et al., 2021 Gerontology