EE-2025 Fall-99	Information Music Listening next week
Lecture 8 FIR Filtering Intro	 Problem Set #4 due TODAY I On-Line HW returns next week MATLAB help: Wed @ 6pm, VL-456
24-Sept-99	Quiz #2 on 25–Oct (Monday)
	11/20/99 EE-2025 Fall-99 rws/jMc 2
READING ASSIGNMENTS	LECTURE OBJECTIVES
This Lecture:	INTRODUCE FILTERING IDEA
Chapter 5, pp. 119–131	I Weighted Average I Running Average
Other Reading:	FINITE IMPULSE RESPONSE FILTERS
Recitation: Ch. 5, pp. 127–133, 142–146	FIR Filters
 CONVOLUTION Next Lecture: Chapter 5, pp. 133–152 	Show how to compute the output y[n] from the input signal, x[n]
11/20/99 EE-2025 Fall-99 rws/jMc 3	11/20/99 EE-2025 Fall-99 rws/jMc 4

Variable-Order Digital Filter for Realizing All Classical Designs The Bockland Model 4136 Programmable Digital TRANSFER FUNCTION Filter consists of a second-order digital filter sec-The transfer function from filter input to filter output tion which is multiplexed four ways to achieve in z-transform rotation s given by eighth-order filtering. Each of the four sections has fully programmable coefficients which are stored K.(1+2-1A1,+2-2A2) internally in a read-write memory. $H_{N}(z) =$ Filter input and output words are in 16-bit paralel 1-z-181,-z-282, form at a maximum sampling rate of 80 KHz while n = 1 (1) internal computations are made with 24-bit ac-where N=0,1,23.4 is one-half the filter order se-

For the price of a small house, you could have one of these.

11/20/99

7

11/20/99

PA Control

Battery/Temp

Monitor

Keyboard

Display

_

Batter

ARM

Control

Vin LDO^{Vout}

Section EN

Analog

Free (?) with 2 year contract

Power Management

Supply Voltage

Supervisor

in LDO^{Vout}

Digital

N Section

PMOS

Switches

in LDO^{vout}

RF

EN Section

8

IrDA

Integrated

ower Suppli

14

 4

2

0

0

15

y[n]

11/20/99

0

0

<u>2</u>

0

2

EE-2025 Fall-99 rws/jMc

PAST, PRESENT, FUTURE

Sec. 5.2 The Running Average Filter **123**

Figure 5.4 The running-average filter calculation at time index *n* uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

GENERAL FIR FILTER

SLIDE a WINDOW across x[n]

$$y[n] = \sum_{k=0}^{M} b_k x[n - k]$$

GENERAL FIR FILTER

FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

FILTER ORDER is M FILTER LENGTH is L = M+1 NUMBER of FILTER COEFFS is L

FILTERING EXAMPLE

- Removes cosine
- **7-point AVERAGER** $y_7[n] = \frac{1}{7} \left(\sum_{k=0}^{6} x[n-k] \right)$
 - By making its amplitdue (A) smaller
- **3-point AVERAGER Changes A slightly** $y_3[n] = \frac{1}{3} \left(\sum_{k=0}^{2} x[n-k] \right)$

3-pt AVG EXAMPLE

7-pt FIR EXAMPLE (AVG)

