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Abstract— A three-dimensional (3-D) reference model is pro-
posed for multiple-input multiple-output (MIMO) mobile-to-
mobile (M-to-M) multipath-fading channels. From this model,
a closed-form joint space-time correlation function is derived for
a 3-D non-isotropic scattering environment. Two sum-of-sinusoids
based 3-D simulation models for MIMO M-to-M multipath-
fading channels are proposed. The statistics of the simulation
models are verified by simulation. Finally, these simulation mod-
els are used to evaluate the effect of the space-time correlation
on the outage capacity of uniform linear antenna arrays and to
compare the capacities of linear, circular, and spherical antenna
arrays.

Index Terms— Mobile-to-mobile channels, three-dimensional
scattering environment, sum-of-sinusoids based channel simula-
tors, antenna arrays, capacity analysis.

I. I NTRODUCTION

M OBILE-to-mobile (M-to-M) communications play an
important role in mobile ad-hoc wireless networks,

intelligent transportation systems, and relay-based cellular net-
works. M-to-M communication systems are equipped with low
elevation antennas with both the transmitter (Tx) and receiver
(Rx) in motion. To successfully design M-to-M systems,
a detailed knowledge of the multipath fading channel and
its statistical properties is required. Early studies of single-
input single-output (SISO) M-to-M fading channels have been
reported by Akki and Haber [1], [2]. They proposed a mathe-
matical reference model and showed that the received envelope
of SISO M-to-M channels is Rayleigh faded under non-line-
of-sight conditions, but the statistical properties differ from
cellular fixed-to-mobile (F-to-M) channels with elevated base
station antennas that are free of local scattering. Simulation
models for SISO M-to-M channels have been reported in [3]-
[5]. Channel measurements for SISO narrowband mobile-to-
mobile communications have been reported in [6]. Recently,

Paper approved by Dr. Kapil Dandekar, the Associate Editor for IEEE
Transactions on Vehicular Technology. Manuscript received September 21,
2006; revised April 3, 2007, May 30, 2007, August 6, 2007, and September
14, 2007. This work was prepared through collaborative participation in the
Collaborative Technology Alliance for Communications & Networks spon-
sored by the U.S. Army Research Laboratory under Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the
U. S. Government.
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using the “two-ring” geometrical model in [7], the refer-
ence models for narrowband multiple-input multiple-output
(MIMO) M-to-M channels have been proposed in [8], [9]. The
simulation models for narrowband MIMO M-to-M channels
have been provided in [10], [11].

All previously reported models assume that the fields inci-
dent on theTx or Rx antennas are composed of a number of
waves travelling only in thehorizontalplane. This assumption
is valid only for certain environments, e.g., rural areas. How-
ever, it seems inappropriate for urban environments where the
Tx andRx antenna arrays are often located in close proximity
to and lower than the surrounding buildings. Scattered waves
may propagate by diffraction from the edges of buildings
down to the street and, thus, not necessarily travel horizon-
tally. In contrast, this paper proposes a three-dimensional
(3-D) reference model for MIMO M-to-M multipath fading
channels. First, we introduce atwo-cylinder3-D geometrical
propagation model for MIMO M-to-M channels that includes
elevation components into our two-dimensional (2-D) model
proposed in [9]. The two-cylinder model can be considered
as an extension of the one-cylinder model for cellular F-to-
M channels proposed in [12], [13]. By taking into account
local scattering around both theTx andRx, and by including
mobility of both theTx and Rx, we obtain our two-cylinder
model. Then, by using this model, we propose a new 3-D
reference model. From the 3-D reference model, we derive
a closed-form joint space-time correlation function for a 3-D
non-isotropic scattering environment. Several existing 2-D M-
to-M, 2-D F-to-M and 3-D F-to-M correlation functions are
shown to be special cases of our 3-D MIMO M-to-M space-
time correlation function. However, as shown later, not all of
2-D and 3-D F-to-M correlation functions can be obtained
from our 3-D MIMO M-to-M space-time correlation function.

The reference model assumes an infinite number of scat-
terers, which prevents practical implementation. Hence, we
propose deterministic and statistical sum-of-sinusoids (SoS)
based simulation models for a 3-D non-isotropic scattering
environment. The statistical properties of our models are veri-
fied by simulations. We use our statistical simulation model to
evaluate the effect of the space-time correlation on the outage
capacity of uniform linear antenna arrays (ULAs) and to
compare the capacities of linear, circular, and spherical antenna
arrays. First, we study the effect of antenna spacing on the
outage capacity. Our results show that increasing the distances
between ULA elements beyond2λ has a negligible effect
on the outage capacity. These results differ from the results
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obtained for cellular F-to-M channels (with fixed, elevated
base station antennas), where increasingRx antenna element
spacing beyond5λ andTx antenna element spacing beyond2λ
has a negligible effect on the capacity [7]. Second, we study
the effect of antenna orientation angles on the outage capacity.
When the radio propagation environment is characterized by
2-D isotropic scattering, the orientations of theTx and Rx

antenna arrays in thex - y plane are observed to have no
influence on the capacity. This property of M-to-M channels is
in contrast to cellular F-to-M channels, where theTx broadside
antenna arrays (array elements placed on they - axis) andRx

inline antenna arrays (array elements placed on thex - axis)
provide higher capacity than theTx andRx broadside antenna
arrays [14], [15]. When the radio propagation environment is
characterized by 2-Dnon-isotropic scattering, the optimum
capacity depends on the relative angle between theTx (Rx)
antenna array and the orientation of local scatterers around the
Tx (Rx). Furthermore, our results show that if the available
area in thex - y plane is insufficient for the antenna array
realization, the antenna array can be vertically tilted without
a significant capacity loss. The results also show that the 2-D
models actually underestimate available capacity. Finally, we
compare the capacities of linear, circular, and spherical antenna
arrays. The results show that if volume available for antenna
array realization is constrained, circular antenna arrays placed
in the x - y plane will provide the highest capacity.

The remainder of this paper is organized as follows. Sec-
tion II describes the system geometry and presents the 3-D ref-
erence model for MIMO M-to-M channels. Section III presents
the derivation of the closed-form joint space-time correlation
function for 3-D non-isotropic scattering. Section IV presents
the 3-D SoS deterministic and statistical simulation models.
Section V briefly reviews MIMO channel capacity, evaluates
the effect of the space-time correlation on the outage capacity
of ULAs, and compares the capacities of uniform linear,
circular, and spherical antenna arrays. Finally, Section VI
provides some concluding remarks.

II. A 3-D REFERENCEMODEL FORMIMO
MOBILE-TO-MOBILE CHANNELS

This paper considers a narrowband MIMO communication
system with LT transmit andLR receive omnidirectional
antenna elements. Both the transmitter (Tx) and receiver
(Rx) are in motion and are equipped with low elevation
antennas. The radio propagation environment is characterized
by 3-D scattering with non-line-of-sight (NLoS) propagation
conditions between theTx and Rx. The MIMO channel is
described by anLR × LT matrix H(t) = [hij(t)]LR×LT

of
complex low-pass faded envelopes.

Fig. 1 shows our two-cylinder model for a MIMO M-to-
M channel with LT = LR = 2 antenna elements. This
elementary2 × 2 antenna configuration will be used later to
construct linear, circular, and spherical multielement antenna
arrays. The two-cylinder model defines two cylinders, one
around theTx and another around theRx, as shown in Fig. 1.
Around the transmitter,M fixed omnidirectional scatterers lie
on the surface of a cylinder of radiusRt, and themth transmit

scatterer is denoted byS(m)
T . Similarly, around the receiver,N

fixed omnidirectional scatterers lie on the surface of a cylinder
with radius Rr, and thenth receive scatterer is denoted by
S

(n)
R . The parameters in Fig. 1 are defined in Table I.
It is assumed that the radiiRt and Rr are much smaller

than the distanceD, i.e.,max{Rt, Rr} ¿ D (local scattering
condition). Furthermore, it is assumed that the distanceD is
smaller than4RtRrLR/(λ(LT − 1)(LR − 1)) (channel does
not experience keyhole behavior [16]), whereλ denotes the
carrier wavelength. Finally, it is assumed that the spacing
between two antenna elements atTx and Rx, dT (p, p̃) and
dR(q, q̃), are much smaller than the radiiRt and Rr, i.e.,
max{dT (p, p̃), dR(q, q̃)} ¿ min{Rt, Rr}.
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Fig. 1. The 3-D geometrical model for MIMO M-to-M channels withLT =
LR = 2 antenna elements.

Observing Fig. 1 and using results in [7], [8], the distances
εpm, εp̃m, εmn, εnq̃, andεnq can be expressed as functions of
the random anglesα(m)

T , α
(n)
R , β

(m)
T , andβ

(n)
R as follows:

εp/p̃,m ≈ Rt

cosβ
(m)
T

− d(A(p/p̃)
T , OT ) sin ψ

(p/p̃)
T sin β

(m)
T

− d(A(p/p̃)
T , OT ) cos θ

(p/p̃)
T cosψ

(p/p̃)
T cos α

(m)
T cosβ

(m)
T

− d(A(p/p̃)
T , OT ) sin θ

(p/p̃)
T cos ψ

(p/p̃)
T sinα

(m)
T cos β

(m)
T , (1)

εn,q/q̃ ≈ Rr

cosβ
(n)
R

− d(A(q/q̃)
R , OR) sin ψ

(q/q̃)
R sinβ

(n)
R

− d(A(q/q̃)
R , OR) cos θ

(q/q̃)
R cos ψ

(q/q̃)
R cosα

(n)
R cosβ

(n)
R

− d(A(q/q̃)
R , OR) sin θ

(q/q̃)
R cosψ

(q/q̃)
R sin α

(n)
R cos β

(n)
R , (2)

εmn ≈
√

D2 + (hT − hR)2 ≈ D, (3)

where p ∈ {1, . . . , LT }, q ∈ {1, . . . , LR}, and parameters
d(A(p/p̃)

T , OT ) and d(A(q/q̃)
R , OR) denote distances (positive

scalars) between thepth transmit antenna element and the
center of theTx antenna array and theqth receive antenna
element and the center of theRx antenna array, respectively.

From the 3-D geometrical model, we observe that the
waves from theTx antenna elements impinge on the scatterers
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TABLE I

DEFINITION OF PARAMETERS INFIGURE 1.

D  The distance between the centers of the Tx and Rx cylinders. 

tR , rR  The radius of the Tx and Rx cylinder, respectively. 

( )ppdT
~,  The spacing between thp  and thp~  antenna elements at the Tx. 

( )qqdR
~,  The spacing between thq  and thq~  antenna elements at the Rx. 

)( p
Tθ , )(q

Rθ  The azimuth angle of thethp  transmit and thq  receive antenna 
element (relative to the x-axis), respectively. 

)( p
Tψ , )(q

Rψ  The elevation angle of thethp  transmit and thq  receive antenna 
element (relative to the x-y plane), respectively. 

Tv , Rv  The velocities of the Tx and Rx, respectively. 

Tγ , Rγ  The moving directions of the Tx and Rx, respectively. 
)(m

Tα , )(n
Rα   The azimuth angles of departure (AAoD) and the azimuth angles 

of arrival (AAoA), respectively. 
)(m

Tβ , )(n
Rβ  The elevation angles of departure (EAoD) and the elevation 

angles of arrival (EAoA), respectively. 

pmε , mp~ε , mnε ,  

nqε , and qn~ε   
The distances ( ))()( , m

T
p

T SAd , ( ))()~( , m
T

p
T SAd , ( ))()( , n

R
m

T SSd , 

( ))()( , q
R

n
R ASd , and ( ))~()( , q

R
n

R ASd  

Th , Rh  The distances ( )', TT OOd  and ( )', RR OOd , respectively. 

 

located on theTx cylinder and scatter from the scatterers
located on theRx cylinder before they arrive at theRx antenna
elements. In contrast to NLoS cellular F-to-M channels where
single-bounced waves are prevalent, in NLoS urban M-to-M
channels the double-bounced waves are dominant. In the 3-D
reference model, the number of local scatterers around theTx

andRx is infinite. Consequently, the received complex faded
envelope of the linkA(p)

T −A
(q)
R is

hpq(t) = lim
M,N→∞

√
1

MN

M∑
m=1

N∑
n=1

Gp

(
α

(m)
T ,β

(m)
T

)
Gq

(
α

(n)
R ,β

(n)
R

)

× e−j 2π
λ (εpm+εmn+εnq)+jφmn+j2πtfTmax cos(α

(m)
T −γT ) cos β

(m)
T

× ej2πtfRmax cos(α
(n)
R −γR) cos β

(n)
R , (4)

where fTmax = vT /λ and fRmax = vR/λ are the max-
imum Doppler frequencies associated with theTx and Rx,
respectively, andGp(α

(m)
T , β

(m)
T ) and Gq(α

(n)
R , β

(n)
R ) denote

the antenna patterns of thepth transmit andqth receive antenna
element, respectively. Since omnidirectional antenna elements
are assumed (i.e., antenna patterns can be normalized to one),
the antenna patterns are omitted in further analysis. It is
assumed that the azimuth and elevation angles of departure
(AAoDs and EAoDs) and the azimuth and elevation angles
of arrival (AAoAs and EAoAs) are random variables. Since
all rays are double-bounced, the angles of departure are
independent from the angles of arrival [16]. Finally, it is
assumed that the phasesφmn are random variables uniformly
distributed on the interval[−π, π) and independent from the
angles of departure and angles of arrival.

Using (1) - (3), the complex faded envelope in (4) can be
rewritten as

hpq(t) = lim
M,N→∞

1√
MN

M∑
m=1

N∑
n=1

ap,m bn,q ejφmn (5)

× ej2πt[fTmax cos(α
(m)
T −γT ) cos β

(m)
T +fRmax cos(α

(n)
R −γR) cos β

(n)
R ],

where

ap,m = e−j π
λ D−j 2π

λ Rt/ cos β
(m)
T +j 2π

λ d
(p)
Tx

cos α
(m)
T cos β

(m)
T

× e
j 2π

λ d
(p)
Ty

sin α
(m)
T cos β

(m)
T +j 2π

λ d
(p)
Tz

sin β
(m)
T (6)

bn,q = e−j π
λ D−j 2π

λ Rr/ cos β
(n)
R +j 2π

λ d
(q)
Rx

cos α
(n)
R cos β

(q)
R

× e
j 2π

λ d
(q)
Ry

sin α
(n)
R cos β

(n)
R +j 2π

λ d
(q)
Rz

sin β
(n)
R , (7)

d
(p)
Tx

= d(A(p)
T , OT ) cos θ

(p)
T cos ψ

(p)
T , (8)

d
(p)
Ty

= d(A(p)
T , OT ) sin θ

(p)
T cos ψ

(p)
T , (9)

d
(p)
Tz

= d(A(p)
T , OT ) sin ψ

(p)
T , (10)

d
(q)
Rx

= d(A(q)
R , OR) cos θ

(q)
R cosψ

(q)
R , (11)

d
(q)
Ry

= d(A(q)
R , OR) sin θ

(q)
R cosψ

(q)
R , (12)

d
(q)
Rz

= d(A(q)
R , OR) sin ψ

(q)
R . (13)

Parametersd(p)
Tx

, d
(p)
Ty

, and d
(p)
Tz

are coordinates of thepth

transmit antenna element relative to the center ofTx antenna
array, whereas parametersd

(q)
Rx

, d
(q)
Ry

, andd
(q)
Rz

are coordinates
of the qth receive antenna element relative to the center
of Rx antenna array. Note that these parameters depend on
antenna array configuration and can be positive or negative
numbers. In this paper, we focus on the uniform linear antenna
arrays(ULA), the uniform circular antenna arrays (UCA), and
the spherical antenna arrays. For ULAs, the coordinates of
antenna elements are defined as follows:

d
(p/q)
Tx/Rx

=
1
2
(LT/R +1−2p(q))dT/R cos θT/R cos ψT/R, (14)

d
(p/q)
Ty/Ry

=
1
2
(LT/R +1−2p(q))dT/R sin θT/R cos ψT/R, (15)

d
(p/q)
Tz/Rz

=
1
2
(LT/R +1−2p(q))dT/R sin ψT/R, (16)

where dT/R denotes the spacing between two adjacent an-
tenna elements at the transmitter/receiver,θT/R describes the
orientation of all transmit/receive antenna elements in the
x - y plane (relative to thex - axis), andψT/R describes
the elevation angle of all transmit/receive antenna elements,
relative to thex - y plane. For UCAs, the coordinates of
antenna elements are defined as follows:

d
(p/q)
Tx/Rx

= rT/R cos
(

2πp(q)
LT/R

)
cos ψT/R, (17)

d
(p/q)
Ty/Ry

= rT/R sin
(

2πp(q)
LT/R

)
cos ψT/R, (18)

d
(p/q)
Tz/Rz

= rT/R sin ψT/R, (19)

whererT/R denotes the radius of the transmit/receive antenna
array circle andψT/R describes the elevation angle of all
transmit/receive antenna elements, relative to thex - y plane.
Finally, for spherical antenna arrays, the coordinates of an-
tenna elements are defined as follows:

d
(p/q)
Tx/Rx

= rT/R cos θ
(p/q)
T/R cos ψ

(p/q)
T/R , (20)
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d
(p/q)
Ty/Ry

= rT/R sin θ
(p/q)
T/R cos ψ

(p/q)
T/R , (21)

d
(p/q)
Tz/Rz

= rT/R sin ψ
(p/q)
T/R , (22)

whererT/R denotes the radius of the transmit/receive spherical

antenna array,θ(p/q)
T/R denotes the azimuth angle of thepth

transmit (qth receive) antenna element relative to thex - axis,
andψ

(p/q)
T/R denotes the elevation angle of thepth transmit (qth

receive) antenna element relative to thex - y plane.

III. SPACE-TIME CORRELATION FUNCTION OF THE3-D
REFERENCEMODEL

Assuming a 3-D non-isotropic scattering environment, we
now derive the space-time correlation function of the complex
faded envelope described in (5). The normalized space-time
correlation function between two complex faded envelopes
hpq(t) andhp̃q̃(t) is defined as

Rpq,p̃q̃[τ ] =
E

[
hpq(t)h∗p̃q̃(t + τ)

]
√

E[|hpq(t)|2]E[|hp̃q̃(t)|2]
, (23)

where( · )∗ denotes the complex conjugate operation,E[ · ]
is the statistical expectation operator,p, p̃ ∈ {1, . . . , LT },
and q, q̃ ∈ {1, . . . , LR}. Using (5) and (23), the space-time
correlation function can be written as

Rpq,p̃q̃[τ ] = lim
M,N→∞

1
MN

M∑
m=1

N∑
n=1

E
[
ap,m bn,q a∗p̃,m b∗n,q̃ (24)

e
−j2πτ

h
fTmax cos(α

(m)
T −γT ) cos β

(m)
T +fRmax cos(α

(n)
R −γR) cos β

(n)
R

i]
.

Since the number of local scatterers in the reference model
described in Section II is infinite, the discrete AAoDs,α

(m)
T ,

EAoDs, β
(m)
T , AAoAs, α

(n)
R , and EAoAs,β(n)

R , can be re-
placed with continuous random variablesαT , βT , αR, and
βR with joint probability density functions (pdfs)f(αT , βT )
andf(αR, βR), respectively. We assume that the azimuth and
elevation angles are independent of each other, and thus, the
joint pdfs f(αT , βT ) and f(αR, βR) can be decomposed to
f(αT )f(βT ) andf(αR)f(βR), respectively. This assumption
is based on experimental data in [17], [18]. Hence, (24) can
be rewritten as

Rpq,p̃q̃[τ ] =
∫ βRm

−βRm

∫ βTm

−βTm

∫ π

−π

∫ π

−π

e−j2πτfTmax cos(αT−γT ) cos βT(25)

× e
−j2πτfRmaxcos(αR−γR)cos βR+j 2π

λ

h
d
(p,p̃)
Tx

cos αT cos βT +d
(p,p̃)
Tz

sin βT

i

× e
j 2π

λ

h
d
(p,p̃)
Ty

sin αT cos βT +d
(q,q̃)
Rx

cos αR cos βR+d
(q,q̃)
Ry

sin αR cos βR

i

× e
j 2π

λ

h
d
(q,q̃)
Rz

sin βR

i
f(αT )f(βT )f(αR)f(βR)dαT dβT dαRdβR,

where d
(p,p̃)
Tx

= d
(p)
Tx
− d

(p̃)
Tx

, d
(p,p̃)
Ty

= d
(p)
Ty
− d

(p̃)
Ty

, d
(p,p̃)
Tz

=

d
(p)
Tz

− d
(p̃)
Tz

, d
(q,q̃)
Rx

= d
(q)
Rx

− d
(q̃)
Rx

, d
(q,q̃)
Ry

= d
(q)
Ry

− d
(q̃)
Ry

,

d
(q,q̃)
Rz

= d
(q)
Rz
− d

(q̃)
Rz

, andβTm and βRm are the non-negative
maximum elevation angles of the scatterers around theTx and
Rx, respectively.

Several different scatterer distributions, such as uniform
[19], von Mises [20], Gaussian, and Laplacian [21], are used
in prior work to characterize the random azimuth anglesαT

and αR. In this paper, we use the von Mises pdf because it
approximates many of the previously mentioned distributions
and leads to closed-form solutions for many useful situations.
The von Mises pdf is defined as [20]

f(θ) =
1

2πI0(k)
exp [k cos(θ − µ)], (26)

where θ ∈ [−π, π), I0( · ) is the zeroth-order modified
Bessel function of the first kind,µ ∈ [−π, π) is the mean
angle at which the scatterers are distributed in thex - y
plane, andk controls the spread of scatterers around the mean.
Prior work uses several different scatterer distributions, such as
uniform [22], cosine [13], and Gaussian [23], to characterize
the random elevation anglesβT andβR. Here, we use the pdf
[13]

f(ϕ) =

{
π

4ϕm
cos

(
π
2

ϕ
ϕm

)
, | ϕ |≤ ϕm ≤ π

2

0 , otherwise
,(27)

because it matches well the experimental data in [18]. Parame-
ter ϕm is the absolute value of the maximum elevation angle
and lies in the range0◦ ≤ ϕm ≤ 20◦ [18]. Such elevation
angles are typical for the “street-canyon” type of propagation
[24], which is prevalent in mobile-to-mobile communications
where both theTx and Rx are in motion and equipped
with low elevation antennas (e.g., two cars driving through
streets). Note that elevation angles between20◦ and80◦ have
been observed for “over the roof” propagation [24], which is
characteristic for fixed-to-mobile communications where the
base-station is elevated above the roofs of the buildings.

By grouping the terms in (25) into those containing
αT and βT and those containingαR and βR, the inte-
grals in (25) reduce to the product of two double inte-
grals, because the random anglesαT and βT are inde-
pendent from the random anglesαR and βR. By denot-
ing the von Mises pdf for theTx and Rx azimuth an-
gles as f(αT ) = exp [kT cos(αT − µT )]/(2πI0(kT )) and
f(αR) = exp [kR cos(αR − µR)]/(2πI0(kR)), respectively,
and by denoting the pdf for theTx and Rx elevation an-
gles asf(βT ) = π cos(πβT /(2βTm))/(4βTm) and f(βR) =
π cos(πβR/(2βRm))/(4βRm), respectively, using trigonomet-
ric transformations, and the equality

∫ π

−π
exp{a sin(c) +

b cos(c)}dc = 2πI0(
√

a2 + b2) [25, eq. 3.338-4], the space-
time correlation function becomes

Rpq,p̃q̃[τ ] =
∫ βTm

−βTm

cos
(

π

2
βT

βTm

)
πej 2π

λ d
(p,p̃)
Tz

sin βT

4βTm

×
I0

(√
x2 + y2 cos βT

)

I0(kT )
dβT

∫ βRm

−βRm

cos
(

π

2
βR

βRm

)

× πej 2π
λ d

(q,q̃)
Rz

sin βR

4βRm

I0

(√
z2 + w2 cos βR

)

I0(kR)
dβR, (28)

where parametersx, y, z, and w are defined asx =
j2πd

(p,p̃)
Tx

/λ − j2πτfTmax cos γT + kT cosµT / cos βT , y =
j2πd

(p,p̃)
Ty

/λ − j2πτfTmax sin γT + kT sin µT / cos βT , z =

j2πd
(q,q̃)
Rx

/λ − j2πτfRmax cos γR + kR cosµR/ cosβR, w =
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j2πd
(q,q̃)
Ry

/λ− j2πτfRmax sin γR + kR sin µR/ cos βR. To ob-
tain the space-time correlation function for 3-D MIMO M-to-
M channels, the integrals in (28) must be evaluated numeri-
cally, because they lack closed-form solutions. However, since
βT and βR are small angles, i.e.,βT , βR ≤ 20◦, using the
small angle approximationscos βT , cos βR ≈ 1, sin βT ≈ βT ,
and sin βR ≈ βR, the space-time correlation function can be
approximated as

Rpq,p̃q̃[τ ] ≈
I0

(√
x2

1 + y2
1

)

I0(kT )

I0

(√
z2
1 + w2

1

)

I0(kR)
(29)

×
∫ βTm

−βTm

π

4βTm

cos
(

π

2
βT

βTm

)
ej 2π

λ d
(p,p̃)
Tz

βT dβT

×
∫ βRm

−βRm

π

4βRm

cos
(

π

2
βR

βRm

)
ej 2π

λ d
(q,q̃)
Rz

βRdβR,

where parametersx1, y1, z1, andw1 are

x1 = j2πd
(p,p̃)
Tx

/λ− j2πτfTmax cos γT + kT cos µT , (30)

y1 = j2πd
(p,p̃)
Ty

/λ− j2πτfTmax sin γT + kT sin µT , (31)

z1 = j2πd
(q,q̃)
Rx

/λ− j2πτfRmax cos γR + kR cosµR, (32)

w1 = j2πd
(q,q̃)
Ry

/λ− j2πτfRmax sin γR + kR sin µR. (33)

Finally, solving the integrals in (29), the space-time correlation
function becomes

Rpq,p̃q̃[τ ] = RT
p,p̃[τ ]RR

q,q̃[τ ] ≈
I0

(√
x2

1 + y2
1

)

I0(kT )
(34)

×
cos

(
2π
λ βTmd

(p,p̃)
Tz

)
[
1−

(
4βTm d

(p,p̃)
Tz

λ

)2
]

I0

(√
w2

1 + z2
1

)
cos

(
2π
λ βRmd

(q,q̃)
Rz

)

I0(kR)

[
1−

(
4βRmd

(q,q̃)
Rz

λ

)2
] .

To illustrate the validity of the approximate space-time cor-
relation function in (34), we compare it with the numerically
obtained space-time correlation function in (28). Fig. 2 shows
the real and imaginary part of the space-time correlation func-
tions in (28) and (34) obtained assuming a uniform linear array
with LT = LR = 2 antenna elements and the parametersdT =
dR = 0.5λ, θT = θR = π/4, ψT = ψR = 2π/3, γT = 20◦,
γR = 40◦, µT = 70◦, µR = 20◦, andkT = kR = 20. Results
show excellent agreement between the space-time correlation
functions in (28) and (34) for the maximum elevation angles
βTm = βRm = 20◦. The similar results can be obtained
for the maximum elevation angles smaller than20◦. Since
such elevation angles are typical for M-to-M communications,
the space-time correlation function of the M-to-M channel
impulse response can be characterized using (34). If “over
the roof” propagation occurs, which is characteristic of F-to-
M communications, and the maximum elevation angles are
larger than20◦, the approximations used to obtain (34) do
not hold any more. To illustrate the discrepancy between
the exact and approximate space-time correlation functions,
Fig. 2 also shows the real and imaginary part of the space-
time correlation functions in (28) and (34) obtained for the

maximum elevation anglesβTm
= βRm

= 80◦ (the largest
elevation angles found in the literature [24]). The results show
that there is still a relatively small discrepancy between the
space-time correlation functions in (28) and (34).

Several existing 2-D M-to-M correlation functions are spe-
cial cases of the 3-D MIMO M-to-M space-time correla-
tion function in (34). The temporal correlation function for
SISO M-to-M channels,J0(2πfTmaxτ)J0(2πfRmaxτ) [1] is
obtained withkT = βTm = 0 (2-D isotropic scattering around
Tx), kR = βRm

= 0 (2-D isotropic scattering aroundRx), and
dT = dR = 0 (single-antennaTx andRx), whereJ0( · ) is the
zeroth-order Bessel function of the first kind. Similarly, assum-
ing 2-D isotropic scattering, the spatial correlation function
for MIMO M-to-M channelsJ0(2πdT /λ)J0(2πdR/λ) [26],
is obtained withkT = kR = 0, βTm

= βRm
= ψT = ψR =

0, and τ = 0. Finally, the space-time correlation function
for MIMO M-to-M channels, assuming 2-D non-isotropic
scattering,I0(

√
x2 + y2)I0(

√
z2 + w2)/(I0(kT )I0(kR)) [9]

is obtained withβTm = βRm = ψT = ψR = 0.
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Fig. 2. The real (a) and imaginary (b) part of the normalized space-time
correlation functions in (28) and (34).

Similarly, several existing F-to-M correlation functions can
be obtained by simplifying the the 3-D MIMO M-to-M space-
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time correlation function in (34) or (28). For example, the
Clarke’s temporal correlation functionJ0(2πfRmaxτ) [27] can
be obtained from (34) using the parameterskR = βRm

= 0
(2-D isotropic scattering aroundRx), fTmax = dT = dR = 0
(stationaryTx, single-antennaTx andRx), and no scattering
aroundTx (set kT = fTmax = dT = 0 to cancel one of the
Bessel functions). Expressions for other temporal correlation
functions based on the one-ring model [20] and based on the
one-cylinder model [13], [28] can be similarly obtained using
(34) and (28), respectively. Finally, assuming 2-D isotropic
scattering, the spatial correlation function for single-input
multiple-output (SIMO) F-to-M channelsJ0(2πdR/λ) [14],
can be obtained from (34) withkT = kR = 0, βTm

=
βRm = ψR = 0, dT = 0, and τ = 0. However, general-
ized expressions for 2-D and 3-D MIMO F-to-M space-time
correlation functions cannot be obtained from the 3-D MIMO
M-to-M space-time correlation functions in (34) or (28).
For example, the 2-D MIMO F-to-M space-time correlation
function exp(j2πdT cos θT /λ)I0

(√
x2

2 + y2
2

)
/I0(kR) [20],

wherex2 = j2πdR cos θR/λ−j2πτfRmax cos γR+kR cos µR,
y2 = j2πdT ∆sin θT /λ+j2πdR sin θR−j2πτfRmax sin γR+
kR sin µR, and ∆ = Rr/D, cannot be obtained from (34).
Similarly, the 3-D MIMO F-to-M space-time correlation func-
tions in [13], [28] are not special cases of (28). The underlying
reason is that the distance traversed by a ray in a double-
bounced M-to-M channel is significantly different from the
distance traversed by a ray in a single-bounced F-to-M chan-
nel, leading to different parameters in the space-time correla-
tion functions. Conversely, the 3-D MIMO M-to-M space-time
correlation functions in (34) or (28) are not straightforward
extensions of the F-to-M space-time correlation functions in
[20], [13], [28].

The 2-D space-time correlation function for M-to-M chan-
nels suggests that two vertically placed antennas are com-
pletely correlated and no diversity gain is available. However,
the 3-D space-time correlation function shows that vertically
placed antennas can have small correlations and provide
considerable diversity gain. To illustrate this, Fig. 3 shows the
spatial correlation functions of two uniformly and vertically
spaced antennas at theTx for several maximum elevation
anglesβTm . Other parameters used to obtain curves in Fig. 3
areLR = 1, θT = θR = 0, ψT = π/2, ψR = 0, γT = γR = 0,
and kT = kR = 0. As the maximum elevation angleβTm

increases from1◦ to 20◦, the correlation between the two
antennas reduces dramatically.

Finally, Fig. 4 compares the Doppler power spectral density
(D-psd) of the complex faded envelope in (5) with the mea-
sured SISO narrowband D-psd in [6]. The D-psd is defined as
the Fourier transform of space-time correlation function and
is calculated asSpq,p̃q̃[f ] = F {Rpq,p̃q̃[τ ]} = F {

RT
p,p̃[τ ]

} ¯
F {

RR
q,q̃[τ ]

}
, where¯ denotes convolution. Parameters used

to obtain simulation results in Fig. 4 areLt = Lr = 1,
βTm = βRm = 15◦, θT = θR = π/4, ψT = ψR = π/3,
γT = 0, γR = 10◦, kT = kR = 3.3, µT = 0, µR = π, and
fTmax = fRmax = 100 Hz. The measured results are taken
from Fig. 7(a) (urban environment) of [6]. The close agreement
between the theoretical and empirical curves confirms the
utility of the proposed narrowband model.
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 Fig. 3. The normalized spatial correlation functions of two uniformly and
vertically spaced antennas at theTx, for several maximum elevation angles
βTm .  

-200 -150 -100 -50 0 50 100 150 200
-45

-40

-35

-30

-25

-20

-15

-10

-5
 Simulated Doppler-psd
 Measured Doppler-psd

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [d

B
]

Doppler Frequency f [Hz]

Fig. 4. The normalized simulated and measured [6] Doppler power spectra.

IV. 3-D SIMULATION MODELS FORMIMO
MOBILE-TO-MOBILE CHANNELS

The reference model described in Section II assumes an
infinite number of scatterers, which prevents practical im-
plementation. Here, we design simulation models with a
finite number of scatterers, while still matching the statistical
properties of the reference model.

Using the reference model in (5) with a finite number
of scatterers and assuming 3-D non-isotropic scattering, the
following function is considered for the received complex
faded envelope

hpq(t) =
1√
MN

M∑
m=1

N∑
n=1

ap,m bn,q ejφmn (35)

× e
j2πt

h
fTmax cos(α

(m)
T −γT ) cos β

(m)
T +fRmax cos(α

(n)
R −γR) cos β

(n)
R

i
,

where parametersap,m and bn,q are defined in (6) and (7).
The angles of departure,α(m)

T and β
(m)
T , and the angles of

arrival, α
(n)
R and β

(n)
R , are random variables and the angles

of departure are independent from the angles of arrival. The
phasesφmn are also random variables uniformly distributed
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on the interval [−π, π) and independent from the angles
of departure and angles of arrival. The AAoDs,α

(m)
T , and

the AAoAs, α
(n)
R , are modeled using the von Mises pdfs

f(αT ) = exp [kT cos(αT − µT )]/(2πI0(kT )) and f(αR) =
exp [kR cos(αR − µR)]/(2πI0(kR)), respectively. They are
generated as follows:

α
(m)
T = F−1

T (ηm), (36)

α
(n)
R = F−1

R (δn), (37)

for m = 1, . . . , M , n = 1, . . . , N . FunctionFT/R( · )−1

denotes the inverse function of the von Mises cumulative
distribution function (cdf) and can be evaluated using method
in [29]. Parametersηm and δn are independent random
variables uniformly distributed on the interval(0, 1). The
EAoDs, β

(m)
T , and the EAoAs,β(n)

R , are modeled using the
pdfs f(βT ) = π cos(πβT /(2βTm))/(4βTm) and f(βR) =
π cos(πβR/(2βRm

))/(4βRm
), respectively, and are generated

as follows:

β
(m)
T =

2βTm

π
arcsin(2νm − 1), (38)

β
(n)
R =

2βRm

π
arcsin(2ζn − 1), (39)

for m = 1, . . . , M , n = 1, . . . , N , where νm and ζn are
independent random variables uniformly distributed on the
interval (0, 1).

For the maximum elevation anglesβTm and βRm in the
range 0◦ ≤ βTm , βRm ≤ 20◦ the elevation angles can be
approximated usingcosβ

(m)
T , cosβ

(n)
R ≈ 1, sin β

(m)
T ≈ β

(m)
T ,

and sin β
(n)
R ≈ β

(n)
R . Then, the complex faded envelope in

(35) can be approximated as

hpq(t) ≈ 1√
MAMENANE

MA,ME∑

m,i=1

NA,NE∑

n,k=1

cp,m,idn,k,q (40)

× e
j2πt

h
fTmax cos(α

(m)
T −γT )+fRmax cos(α

(n)
R −γR)+jφm,i,n,k

i
,

where MAME = M , NANE = N , parameterscp,m,i and
dn,k,q are defined as

cp,m,i = e
−j 2π

λ [ D
2 +Rt−d

(p)
Tx

cos α
(m)
T −d

(p)
Ty

sin α
(m)
T −d

(p)
Tz

sin β
(i)
T ]

,(41)

dn,k,q = e
−j 2π

λ [ D
2 +Rr−d

(q)
Rx

cos α
(n)
R −d

(q)
Ry

sin α
(n)
R −d

(q)
Rz

sin β
(k)
R ]

,(42)

andd
(p/q)
Tx/Rx

, d
(p/q)
Ty/Ry

, andd
(p/q)
Tz/Rz

are defined as in (8) - (13).

A. Deterministic and Statistical 3-D MIMO M-to-M Simula-
tion Models

First, we propose an ergodic statistical (deterministic)
model. This model has only the phasesφm,i,n,k as random
variables and needs only one simulation trial to obtain the de-
sired statistical properties. We use the complex faded envelope
in (40) and generate the AAoDs, AAoAs, EAoDs, and EAoAs
as follows:

α
(m)
T = F−1

T

(
m− 0.5

MA

)
, (43)

α
(n)
R = F−1

R

(
n− 0.5

NA

)
, (44)

β
(i)
T =

2βTm

π
arcsin

(
2i− 1
ME

− 1
)

, (45)

β
(k)
R =

2βRm

π
arcsin

(
2k − 1
NE

− 1
)

, (46)

for m = 1, . . . , MA, n = 1, . . . , NA, i = 1, . . . ,ME , k =
1, . . . , NE , respectively.

For M, N →∞, our deterministic model can be shown
to exhibit properties of the reference model. The space-time
correlation function of the complex faded envelope in (40)
matches the approximate space-time correlation function in
(34). The derivation of the space-time correlation function of
the complex faded envelope in (40) is omitted for brevity.

Fig. 5 shows the real part of the space-time correlation
function for the deterministic model withMA = 30, ME = 5,
NA = 30, and NE = 5 scatterers and a uniform linear
antenna array withLT = LR = 2 antennas. Other parameters
used to obtain the curves in Fig. 5 aredT = dR = 1λ,
θT = θR = π/3, ψT = ψR = π/4, γT = π/6, γR = π/12,
βTm = βRm = 15◦, and kT = kR = 0. Fig. 5 does not
show the imaginary part of the space-time correlation function
because it is zero forkT = kR = 0. The results show that
the space-time correlation function of the deterministic model
closely matches the theoretical one in the range of normalized
time delays,0 ≤ fTmaxTs ≤ 5. The deterministic model can
match the theoretical one over a wider range of normalized
time delays if a larger number of scatterers is used in the
simulation model.

0 2 4 6 8
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
 Re{R22,11(τ)}  Reference model
 Re{R22,11(τ)}  Deterministic model

S
pa

ce
-T

im
e 

C
or

re
la

tio
n 

F
un

ct
io

n

Normalized Time Delay [fTmaxτ]

 Fig. 5. The real part of the space-time correlation function of the deterministic
and reference models.

Deterministic simulators are often used because they are
easy to implement and have short simulation times. However,
they do not reflect actual channel realizations because their
scatterers are placed at specific sights for all simulation trials.
By allowing both the phases and Doppler frequencies to be
random variables, our deterministic model can be modified to
better model the fading processes. Furthermore, this new (sta-
tistical) model matches statistical properties of the reference
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model over a wider range of normalized time delays, while
at the same time requiring a smaller number of scatterers.
The statistical properties of the statistical model vary for
each simulation trial, but will converge to desired ensemble
averaged properties when averaged over a sufficient number
of simulation trials.

We use the complex faded envelope in (40) and generate
the AAoDs, AAoAs, EAoDs, and EAoAs as follows:

α
(m)
T = F−1

T

(
m + θA − 1

MA

)
, (47)

α
(n)
R = F−1

R

(
n + ψA − 1

NA

)
, (48)

β
(i)
T =

2βTm

π
arcsin

(
2(i + θE − 1)

ME
− 1

)
, (49)

β
(k)
R =

2βRm

π
arcsin

(
2(k + ψE − 1)

NE
− 1

)
, (50)

for m = 1, . . . , MA, n = 1, . . . , NA, i = 1, . . . , ME , k =
1, . . . , NE , respectively. The parametersθA, ψA, θE , andψE

are independent random variables uniformly distributed on the
interval [0, 1).

For arbitrary number of scatterers, i.e., anyM,N , our
statistical model can be shown to exhibit properties of the
reference model. The derivation of the space-time correlation
function of the complex faded envelope in (40) is omitted for
brevity.

Fig. 6 shows the real part of the space-time correlation
function for the statistical model withMA = 20, ME = 3,
NA = 20, and NE = 3 scatterers,Nstat = 50 simulation
trials and an uniform linear antenna array withLT = LR = 2
antennas. Other parameters are the same as in Fig. 5. The
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Fig. 6. The real part of the space-time correlation function of the statistical
and reference models. The curves are obtained using parametersdT = dR =
1λ, θT = θR = π/3, ψT = ψR = π/4, γT = π/6, γR = π/12,
βTm = βRm = 15◦, kT = kR = 0, LT = LR = 2, MA = 20, ME = 3,
NA = 20, andNE = 3 scatterers, andNstat = 50 simulation trials.

results in Figs. 5 and 6 show that the space-time correlation
function of the statistical model matches that of the reference
model over a wider range of normalized time delays, i.e.,
0 ≤ fTmaxTs ≤ 10, compared to the space-time correlation
function of the deterministic model.

V. NUMERICAL ANALYSIS OF M-TO-M CHANNEL

CAPACITY

In this section, we first briefly review the MIMO channel
capacity and show that our simulation models can be used to
evaluate M-to-M channel capacity. Then, we evaluate the effect
of the space-time correlation on the outage capacity of uniform
linear antenna arrays. Finally, we compare the capacities of
uniform linear, uniform circular, and spherical antenna arrays
to determine the best antenna configuration.

A. Review of MIMO Channel Capacity

The instantaneous channel capacity (inbit/s/Hz) of a
stochastic MIMO channel, under an average transmit power
constraint is [7], [10]

C(t) = log2 det
(

ILR
+

ρ

LT
H(t)HH(t)

)
, (51)

where it is assumed thatLT ≥ LR, the transmitter has
no channel knowledge, and the receiver has perfect channel
knowledge. In (51),H(t) = [hij(t)]LR×LT is the LR × LT

matrix of complex faded envelopes,( · )H denotes the
transpose conjugate operation,det( · ) denotes the matrix
determinant,ILR

is theLR×LR identity matrix, andρ is the
average signal-to-noise ratio (SNR). In this paper, the ergodic
capacity of a MIMO channel is defined as the expectation of
the instantaneous capacity over time, i.e.,

E[C(t)] = E
[
log2 det

(
ILR +

ρ

LT
H(t)HH(t)

)]
. (52)

In the practice, the outage capacity is often used to characterize
the properties of the MIMO channel. Here, the outage capacity
Cout is associated with an outage probabilityPout which gives
the probability that the instantaneous channel capacity,C, falls
below Cout.

There are several ways to generate the channel matrix
H. One way is to use the simulation models proposed in
Section IV. The elements of the channel matrix can be
obtained directly, using (40). We will refer to these models
as the deterministic and statistical physical models. The other
way is to generate the channel matrix as a product of the
white channel matrix and the square root of desired correlation
matrix. We will refer to this model as the non-physical model.
The non-physical model generates the M-to-M channel matrix
as [16]

H = (RR[0])1/2G(RT [0])T/2, (53)

where G is an LR × LT stochastic matrix with complex
Gaussian i.i.d. entries,( · )1/2 denotes the matrix square root
operation,( · )T denotes the transpose operation, andRR[0]
and RT [0] are theLR × LR receive andLT × LT transmit
correlation matrices, respectively. The elements of matrices
RR[0] andRT [0] are obtained using (34).

Here we compare the ergodic capacities obtained using the
non-physical and physical models. Fig. 7 shows the ergodic
capacity against SNR,ρ, for several uniform linear antenna
arrays (LT = LR = 2, LT = LR = 4, andLT = LR = 6).
The parameters used to obtain the curves in Fig. 7 areθT =
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θR = π/4, ψT = ψR = π/6, γT = 0, γR = 20◦, βTm =
βRm

= 15◦, kT = kR = 5, µT = π/2, andµR = 3π/2. The
spacing between two adjacent antenna elements at theTx and
Rx is chosen to be0.5λ. The deterministic simulation model
usesMA = NA = 60, andME = NE = 5 scatterers, whereas
the statistical simulation model usesMA = NA = 20, and
ME = NE = 3 scatterers andNstat = 50 simulation trials.
Results show good agreement between the non-physical and
physical models.
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 Fig. 7. Comparison of the ergodic capacities obtained using the non-physical
model and the deterministic and statistical physical models.

B. Effect of Space-Time Correlation on Outage Capacity of
ULAs

In this section, the effect of the space-time correlation
on the outage capacity of ULAs is investigated. In all sim-
ulations, the outage capacityCout is calculated for a1%
outage probability and the statistical physical model is used
to calculate the outage capacity. The coordinates of antenna
elements at theTx and Rx are calculated using equations
(14) - (16). A normalized sampling periodfTmaxTs = 0.01
(fTmax = fRmax are the maximum Doppler frequencies and
Ts is the sampling period) is used in all simulations. Finally,
the statistical physical model usesMA = NA = 20, and
ME = NE = 3 scatterers andNstat = 50 simulation trials.

Fig. 8 shows the outage capacity as a function of the spacing
between theTx and Rx antenna array elements. Parameters
used to obtain the curves in Fig. 8 areγT = γR = 20◦,
θT = θR = π/4, ψT = ψR = π/3, βTm = βRm = 15◦,
ρ = 15 dB, LT = LR = 3, µT = 0◦, µR = 180◦, and
kT = kR = 10 (non-isotropic scattering environment). We
can observe that increasing antenna element spacingsdT and
dR from 0.1λ to 2λ increases the capacity from6 bit/s/Hz to
12 bit/s/Hz. However, increasing antenna element spacings
dT anddR beyond2λ has a negligible effect on the capacity.
These results differ from results obtained for cellular F-to-M
channels (with fixed, elevated base station antennas), where
increasing theRx antenna element spacingdR beyond5λ and
theTx antenna element spacingdT beyond2λ has a negligible
effect on the capacity [7].
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 Fig. 8. The outage capacity as a function of spacing between theTx and
Rx antenna array elements.

Fig. 9 shows the influence of theTx andRx antenna array
orientations on the capacity whenTx andRx antenna arrays
are placed in thex - y plane. To analyze antenna array
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 Fig. 9. The outage capacity as a function of theTx andRx antenna array
orientations,θT andθR.

orientations only in thex - y plane, the elevation anglesψT

and ψR are set to zero. The parameters used to obtain the
curves in Fig. 9 areγT = γR = 20◦, θT = θR = π/4,
dT = dR = 1λ, ρ = 15 dB, LT = LR = 3, µT = 0◦

andµR = 180◦. From Fig. 9, we can observe that when 2-D
isotropic scattering is assumed (kT = kR = 0), orientations
of the Tx and Rx antenna arrays have no influence on the
capacity. Note that this property of M-to-M channels is in
contrast to cellular F-to-M channels (with elevated base station
antennas), whereTx broadside antenna arrays (θT = 90◦) and
Rx inline antenna arrays (θR = 0◦) provide higher capacity
than Tx and Rx broadside antenna arrays [14], [15]. When
2-D non-isotropic scattering is assumed (kT = kR = 10), we
can observe that the outage capacity is the lowest for inline
antenna arrays and the highest for broadside antenna arrays.
Increasing antenna anglesθT andθR from 0◦ to 45◦ increases
capacity by 4.1 bit/s/Hz. However, a further increase of
antenna anglesθT andθR from 45◦ to 90◦ increases the outage
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capacity by only0.8 bit/s/Hz. On the other hand, if local
scatterers are centered around they - axis, (i.e.,µT = 90◦

and µR = 270◦) the outage capacity will be the lowest for
broadside antenna arrays and the highest for inline antenna
arrays. This implies that the optimum capacity depends on
the relative angle between theTx antenna array and the local
scatterers around theTx, i.e., µT − θT , and on the relative
angle between theRx antenna array and the local scatterers
around theRx, i.e., µR − θR.

Fig. 10 shows the influence of theTx and Rx antenna
elevation angles on the outage capacity. The parameters used
to obtain the curves in Fig. 10 areγT = γR = 20◦, θT =
θR = π/2, βTm

= βRm
= 15◦, ρ = 15 dB, LT = LR = 3,

µT = 0◦ and µR = 180◦. From Fig. 10, observe that when
isotropic scattering in thex - y plane is assumed (kT =
kR = 0) and the distances between antenna array elements
are dT = dR = 0.2λ, increasing antenna anglesψT and ψR

from 0◦ to 45◦ has a small influence on the outage capacity.
A further increase in the antenna elevation angles drastically
decreases the capacity. When the distance between antenna
array elements is increased todT = dR = 1λ, increasing
anglesψT andψR from 0◦ to 70◦ has a small influence on the
outage capacity. Furthermore, when non-isotropic scattering
in the x - y plane is assumed (kT = kR = 10) and the
distances between antenna array elements aredT = dR = 1λ,
increasing antenna anglesψT andψR from 0◦ to 45◦ decreases
the outage capacity by only0.4 bit/s/Hz. A further increase
of antenna elevation angles drastically decreases the outage
capacity. Fig. 10 implies that if available area in thex - y
plane is not sufficient for the antenna array realization, the
antenna array can be moderately tilted without significant loss
of outage capacity.
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 Fig. 10. The outage capacity as a function of theTx andRx antenna array
elevations,ψT andψR.

Finally, Fig. 11 shows the capacity as a function of the
maximum elevation anglesβTm andβRm . The parameters used
to obtain the curves in Fig. 11 areγT = γR = 20◦, θT =
θR = π/4, ψT = ψR = π/3, dT = dR = 1λ, ρ = 15 dB,
LT = LR = 3, µT = 0◦, µR = 180◦, and kT = kR = 10.
Observe that by increasing maximum elevation anglesβTm

andβRm from 1◦ to 20◦ the outage capacity increases by up
to 1 bit/s/Hz. This result implies that the 2-D models actually

underestimate available capacity.
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 Fig. 11. The outage capacity as a function of the maximum elevation angles
βTm andβRm .

C. Comparison of Linear, Circular, and Spherical MIMO
Antenna Configurations

In the previous section, the effect of the space-time correla-
tion on the outage capacity of ULAs was investigated. Here,
we compare the capacities of uniform linear, circular, and
spherical antenna arrays. Again, the outage capacityCout is
calculated for a1% outage probability and the physical model
is used to calculate the outage capacity. In all simulations,
a normalized sampling periodfTmaxTs = 0.01 is used and
MA = NA = 20, andME = NE = 3 scatterers andNstat =
50 simulation trials are used in the statistical simulation model.
The angles of motion for theTx and Rx are chosen to be
γT = γR = 40◦. The maximum elevation angles are chosen
to beβTm = βRm = 15◦. The number of transmit and receive
antennas is set toLT = LR = 8. Finally, isotropic scattering
is assumed in thex - y plane, i.e.,kT = kR = 0.

The coordinates of the ULA elements are calculated as
in the previous section. The azimuth and elevation angles
used for the ULA areθT = θR = π/4 and ψT = ψR =
arcsin(1/

√
3), respectively. The coordinates of the circular

antenna array elements at theTx andRx are calculated using
equations (17) - (19). The elevation angles used for the circular
antenna arrays areψT = ψR = arcsin(1/

√
3). Finally, the

coordinates of the spherical antenna array elements at the
Tx and Rx are calculated using equations (20) - (22). The
azimuth and elevation angles used for the spherical antenna
arrays areθ(p)

T = 2πp/LT , θ
(p̃)
T = 2πp̃/LT , θ

(q)
R = 2πq/LR,

θ
(q̃)
R = 2πq̃/LR, andψT = ψR = ± arcsin(1/

√
3).

There are two ways to compare antenna arrays. One main-
tains an equal spacing between two adjacent antenna elements
in the uniform linear, circular, and spherical antenna arrays.
The other designs uniform linear, circular, and spherical an-
tenna arrays to occupy the same volume.

First, we assume that the spacings between two adjacent
antenna elements of the uniform linear, circular, and spherical
antenna arrays are equal, i.e.,dT = dR = 0.5λ andrT = rR =
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0.5λ/(2 sin(π/8)). Fig. 12 shows the outage capacity against
SNR, ρ, for several uniform linear, circular, and spherical
antenna arrays when isotropic scattering is assumed in thex - y
plane (kT = kR = 0). As expected, non-tilted (ψT = ψR = 0)
and tilted (ψT = ψR = arcsin(1/

√
3)) ULAs have a higher

outage capacity than non-tilted and tilted circular and spherical
antenna arrays because their non-adjacent antenna elements
are placed further apart compared to circular and spherical
antenna arrays. When isotropic scattering is assumed in the
x - y plane, the orientations of ULAs have no influence on the
capacity, and hence, ULAs will always provide higher capacity
than circular and spherical antenna arrays. Note that when non-
isotropic scattering is assumed in thex - y plane (kT , kR > 0),
ULAs have higher capacity than circular and spherical antenna
arrays only if the ULA orientation anglesθT and θR are
chosen to maximize the relative angles between theTx and
Rx antenna arrays and the local scatterers around theTx and
Rx, i.e., µT − θT and µR − θR, respectively. If the angles
µT − θT and µR − θR are known to a reasonable accuracy,
it is advantageous to deploy uniform linear antenna arrays
with optimized anglesθT andθR. Otherwise, circular antenna
arrays may be a better choice because they will provide more
a consistent outage capacity.
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 Fig. 12. The outage capacity against SNR,ρ, for several uniform linear,
circular, and spherical antenna arrays having equal spacing between two
adjacent antenna elements. The curves are obtained using parametersγT =
γR = 40◦, dT = dR = 1λ, LT = LR = 8, andkT = kR = 0.

In practice, the available volume for antenna array realiza-
tion and packaging is often constrained. Suppose, for example,
that the uniform linear, circular, and spherical antenna arrays
are designed to fit in a sphere of radius(

√
3/2)λ. Then, the

spacing between two adjacent antenna elements of the ULA
is dT = dR = (

√
3/8)λ, whereas the radii of the circular

and spherical antenna arrays arerT = rR = (
√

3/2)λ. It is
assumed that omnidirectional antenna elements are realized
as patch antennas. Fig. 13 shows the outage capacity against
SNR, ρ, for several uniform linear, circular and spherical
antenna arrays occupying equal volume. As expected, the tilted
(ψT = ψR = arcsin(1/

√
3)) uniform linear and circular

antenna arrays have a smaller outage capacity compared to
the non-tilted (ψT = ψR = 0) ones. An interesting result
is that non-tilted circular antenna arrays have higher outage

capacity than spherical antenna arrays by about1 bit/s/Hz.
Tilted circular and spherical antenna arrays have similar outage
capacity, and a much higher outage capacity than non-tilted
and tilted ULAs. From Fig. 13 we can conclude that if the
available volume for antenna array realization is constrained,
circular antenna arrays placed in thex - y plane will provide
the highest outage capacity.
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 Fig. 13. The outage capacity against SNR,ρ, for several uniform linear,
circular and spherical antenna arrays occupying equal volume. The curves are
obtained using parametersγT = γR = 40◦, dT = dR = 1λ, LT = LR =
8, andkT = kR = 0.

VI. CONCLUSIONS

In this paper, the “two-cylinder” geometrical propagation
model is introduced. Based on this geometrical model, the
3-D reference model for MIMO M-to-M multipath-fading
channels is proposed. From the reference model, the closed-
form joint space-time correlation function for a 3-D non-
isotropic scattering environment is derived. Furthermore, the
deterministic and statistical SoS simulation models for MIMO
M-to-M multipath-fading channels are proposed. The statistics
of the simulation models are verified by simulation. Finally,
these simulation models are used to evaluate the effect of the
space-time correlation on the outage capacity of uniform linear
antenna arrays and to compare the capacities of linear, circular,
and spherical antenna arrays.
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