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 Abstract — Gaussian-like filters are frequently used in digital signal transmission. Usually, these 
filters are made of lumped inductors and capacitors. In the stopband, these filters exhibit a high 
reflection, which can create unwanted signal interference. To prevent that, a new, low-reflection ladder 
network is introduced that consist of resistors, inductors, and capacitors. The network models fictitious 
transmission lines with Gaussian-like amplitude characteristics. Starting from the analysis of this 
network, a procedure is developed for synthesis of a new class of lumped-element RLC filters. These 
filters have transmission coefficients similar to the classical Bessel filters. In contrast to the Bessel filters, 
the new filters exhibit a low reflection both in the stopband and passband, they have a small span of 
element parameters, and they are easy for manufacturing and tuning. 

 Indexing terms — Linear phase filters, low-pass filters, distributed parameter filters, impedance 
matching. 

I. INTRODUCTION 

In digital signal transmission, Gaussian-like frequency-domain transfer functions are usually desirable because 
they do not yield overshoots and ringing in the time domain. For practical filter design, the leading 
representatives for this kind of low-pass filters are the Bessel (Bessel-Thompson) filters, which have a 
maximally flat group delay [1]. Lumped element realizations of such filters and their implementations in the 
microwave range have been well developed and known, e.g., [2], [3]. 
 These filters are, theoretically, lossless. For a low-pass filter of this kind, at low frequencies, the 
magnitude of the transfer function ( |||| 1221 ss = ) is close to 1 (0 dB) and the magnitude of the reflection 
coefficient ( |||| 2211 ss = ) is close to 0. The filters have a mild transition to the stopband, where the magnitude of 
the transfer function becomes close to 0, but the magnitude of the reflection coefficient becomes close to 1. 
Hence, the classical filters exhibit a high reflection (except near the zero frequency), which is undesirable in 
many digital-circuit applications as it can create signal interference. 
 A filter that exhibits little or no reflection both in the passband and in the stopband can be named a 
matched filter. However, the term "matched filter" has a different meaning in communications. Hence, we shall 
refer to such filters as low-reflection filters. 
 To achieve a good matching, the network must be lossy1. Matching at one port of the filter can be 
achieved by making a diplexer with a dummy complementary filter or using hybrids [4]. This procedure can 
yield a good selectivity, but has the disadvantage of increased complexity. To make a symmetrical low-reflection 
filter, the complexity is even further increased.  
 Losses in filter elements have been reported in [5] to improve matching in the passband. However, this 
concept has not been further elaborated, and, as far as the authors could search, there is no published theoretical 
                                                            
1 For a lossless network, 1|||||||| 2
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work that covers synthesis of low-reflection filters. Recently, Gaussian-like filters with lossy elements have been 
reported (e.g., [6]) where the magnitude of the reflection coefficient is kept reasonably low both in the passband 
and in the stopband, at both filter ports, but details of the design have not been published. 
 The present paper has several goals. Section II starts from the theory of the classical lossy transmission 
lines and reveals a derivation of a new class of distributed-parameter (transmission-line) low-reflection filters 
that have Gaussian-like amplitude characteristics. Section III presents a design procedure for lumped-element 
networks that approximate transmission-line Gaussian filters. A particular case is emphasized that yields a flat 
group delay. Section IV presents experimental results for a microstrip implementation and compares them with 
theoretical data. 

II. LOSSY TRANSMISSION LINES WITH GAUSSIAN CHARACTERISTIC 

We start from the classical lossy transmission line, whose primary parameters are the per-unit-length inductance 
(l), capacitance (c), resistance (r), and conductance (g). The telegrapher's equations for this line are derived 
starting from the lumped-element model shown in Figure 1, where the elements of a half-cell2 are 
 L l x= ∆ ,  (1) 

 C c x= ∆ ,  (2) 

 R r x= ∆ ,  (3) 

 G g x= ∆ ,  (4) 

and ∆x  is the length of the line approximated by the half-cell. Note that the inductor L and the resistor R (which 
models conductor losses) are connected in series, whereas the capacitor C and the resistor G (which models 
dielectric losses) are connected in parallel. By letting 0→∆x , a network with distributed parameters is 
obtained, and the Kirchhoff voltage and current laws are substituted by differential (telegraphers') equations. 
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Fig. 1. Lumped-element ladder-network approximation of a lossy transmission line. 

  We assume the parameters r, l, c, and g to be frequency independent and to satisfy Heavyside's 
condition, 

 r
l

g
c

= . (5) 

The per-unit length impedance and admittance of the line are z r l= + jω  and y g c= + jω , respectively, where 
ω is the angular frequency. The characteristic impedance of the line is  

 
y
zZ =c .  (6) 

Under the condition (5), equation (6) yields 
g
r

c
lZ ==c , so the characteristic impedance is purely resistive 

and frequency-invariant. The propagation coefficient is  

 β+α==γ jzy .  (7) 

                                                            
2 A half-cell consists of one series branch and one adjacent shunt branch. 
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Under the condition (5), the attenuation coefficient, rg=α , and the wave velocity, 
lc

v 1
=

β
ω

= , are also 

independent of frequency. The phase coefficient, β, is a linear function of frequency. 
 If we consider this line as a two-port network and if both port nominal impedances are equal to cZ , the 
network is perfectly matched, i.e., the intrinsic reflection coefficients are s s11 22 0= = . If the line length is D, 
the transfer function of the network is 
 s s D12 21= = −exp( )γ . (8) 

The magnitude of the transfer function is | | | | exp( )s s D12 21= = −α . It can be expressed in decibels as  

 aDss −=α−== dB686.8|||| dB21dB12 , (9) 

where a is the attenuation (insertion loss) of the network. If (5) is fulfilled, then the attenuation is 
dB686.8 rgDa =  and it is independent of the frequency. Hence, the lossy transmission line represents a 

broadband (allpass) attenuator, with a frequency-invariant attenuation. The phase (in radians) of the transfer 
function is 
 Dss β−=ϕ== )arg()arg( 2112 . (10) 

If (5) is fulfilled, the phase is Dlcω−=ϕ  and it is a linear function of frequency. The group delay, τ
ϕ
ω

= −
d
d

, 

is constant, and the network is perfectly dispersionless. 
 A lumped-element approximation to this transmission line can be made in the form of a ladder network. 
This is the same network as shown in Figure 1, with a finite number of half-cells. The lumped-element network 
is a good approximation of the transmission line at lower frequencies. As the frequency increases, the lumped-
element network behaves like a low-pass filter with the cutoff angular frequency 

 
LC
2

c =ω . (11) 

Hence, for a given transmission line, the approximation will hold up to higher frequencies if the lumped-element 
network contains more half-cells, i.e., if ∆x  is smaller. 
 By a simple rearrangement of elements of the network of Figure 1, we obtain a low-pass filter, shown in 
Figure 2, whose transfer characteristic is similar to the ideal Gaussian filter, and, hence, akin to the Bessel filters 
and finite-order Gaussian filters.  
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Fig. 2. Lumped-element ladder-network approximation of the complete Gaussian transmission line. 

 We can formally apply the same analysis as for the classical transmission line. The per-unit-length 

impedance of the line is z rl
r l

=
+
j

j
ω

ω
 and the per-unit-length admittance is y gc

g c
=

+
j

j
ω

ω
. Assuming (5) to be 

fulfilled, the characteristic impedance of the line is again independent of frequency,  

 
g
r

c
lZ ==c . (12) 

We introduce the break-point angular frequency,  
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 ωb = =
r
l

g
c

. (13) 

Below this frequency, the real parts in the denominators of the per-unit-length impedance and admittance 
dominate. Beyond this frequency, the imaginary parts dominate. The per-unit length impedance and admittance 

are now z
r

=
+

j

j
b

b

ω
ω

ω
ω

1
 and y

g
=

+

j

j
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1
, respectively. The propagation coefficient can be written in the form 

 




















ω
ω

−
ω
ω

ω+




















ω
ω

−







ω
ω

ω≈

ω
ω

ω
=

ω
ω

ω
ω

=γ
3

bb
b

4

b

2

b
b

bb

b j
j+1

j

j+1

j
lclclc

rg
 (14) 

because rg lc= ωb
2 . The approximation is valid when bω<<ω . The real part of the propagation coefficient, 

i.e., the attenuation coefficient of the line, is 
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When ω ω<< b , the attenuation of the line follows the Gaussian form, i.e., it is proportional to frequency 
squared. When the frequency approaches ωb , the amplitude characteristic flattens out, tending to a constant (i.e., 

α → rg ). The imaginary part of the propagation coefficient, i.e., the phase coefficient, is  
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When ω ω<< b , the phase characteristic is linear, lcω≈β , the phase velocity is approximately constant and 

equal to 1/ lc , and the group delay is flat.  
 The amplitude and phase characteristics of the line show that the line can be used as a low-pass filter 
that approximates Gaussian and Bessel filters. 
 The transmission line derived from Figure 2 (when 0→∆x ) will be referred to as the complete 
Gaussian line, because losses are introduced both in series and parallel branches.  
 We introduce the incomplete Gaussian line, which is derived from the lumped-element network shown 
in Figure 3. In this figure, resistors exist only in shunt branches, so that the total number of resistors is halved 
when compared with Figure 2. (By duality, resistors can be located only in series branches.)  
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Fig. 3. Lumped-element ladder-network approximation of the incomplete Gaussian transmission line. 
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 The per-unit-length impedance and admittance of the incomplete Gaussian line are z l= jω  and 

y gc
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g
=

+
=
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j
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1
, respectively, where, following (13), ωb =

g
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. The characteristic impedance of the 

incomplete Gaussian line depends on frequency, 
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where the approximate expression is valid at lower frequencies, when bω<<ω . The propagation coefficient is 
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We compare equations (14) and (18). The real part of the propagation coefficient has in both cases a Gaussian 
behavior at lower frequencies. The deviation from the ideal characteristic as bω→ω  is somewhat larger for 

(14) than for (18), because the coefficients with the 
4

b








ω
ω  term are 1 and 0.625, respectively. The phase 

coefficient in both (14) and (18) is linear at lower frequencies, and it starts deviating when bω→ω . The 

deviation from the linear phase in (14) is larger than in (18), because the coefficients with the 
3

b








ω
ω  term are 1 

and 0.375, respectively. 
Figure 4 shows magnitudes of transmission coefficients of the ideal Gaussian filter, the eighth-order 

Bessel and Gaussian lumped-element filters [1] (labeled Bessel 8 and Gauss 8, respectively), complete and 
incomplete Gaussian transmission lines for 3dBb 3ω=ω  (labeled Complete GTL and Incomplete GTL, 
respectively), and their lumped-element approximations of the eighth-order (labeled Complete 8 and Incomplete 
8, respectively). At the normalizing angular frequency, 3dBω , the transmission coefficient is dB3− . The order 
of a filter is twice the number of half-cells (N) in Figures 2 and 3.  

Note that if bω  is increased, the transmission coefficients of the complete and incomplete Gaussian line 
(as well as of their lumped-element approximations) follow much closer the ideal Gaussian filter or the Bessel 
filter than shown in Figure 4. For a given value of bω , the incomplete Gaussian line has a steeper transfer 
function than the corresponding complete line. The incomplete line does not have an asymptotic value for the 
insertion loss, i.e., it behaves like a low-pass filter with an infinitely decaying skirt. 
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Fig. 4. Magnitude of the transmission coefficient. 

III. DESIGN PROCEDURE FOR LUMPED-ELEMENT FILTERS 

We present two design cases. The first one is the design of a lumped-element network whose characteristics 
closely follow the Gaussian line, up to a certain frequency. The second design is an optimized filter, whose 
group-delay characteristic is superior to the Gaussian line. In both cases, we consider complete and incomplete 
Gaussian lines. 

III.1. Approximation of Complete Gaussian Line 
As the first step, we design a complete Gaussian line given the nominal impedance (equal to Zc ), the 3 dB 
attenuation frequency ( 3dBf , viz. 3dB3dB 2 fπ=ω ), and the break-point frequency ( bf , viz. bb 2 fπ=ω ). We 
have to evaluate the parameters l, r, c, g, and D. There is a total of four conditions, i.e., the three requests plus 
the condition (5), and a total of five parameters. To simplify the design, we reduce the number of parameters to 
four by defining the total parameters of the line, lDL =t , R rDt = , C cDt = , and G gDt = .  
 To evaluate the total parameters of the line, we start from the attenuation of the two-port network. 
According to (9) and (15), 
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Since dB3=a  at dB3ω , using equations (12), (13), and (19), we obtain 
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 2
c

t
t

Z
LC = , (21) 

 tbt LR ω= , (22) 

 2
c

t
t

Z
RG = . (23) 

 As the second step, we find a lumped-element approximation to this line according to the scheme in 
Figure 2. We assume that the ladder network approximation consists of N identical half-cells. The values of the 
lumped elements are NLL /t= , NRR /t= , NCC /t= , and NGG /t= . All the elements in this design have 
identical values, which may be advantageous for manufacturing. However, to make a symmetrical network, it is 
possible to have a symmetrical topology, as in Figure 5. A dual alternative is also possible, starting and ending 
with a series branch. 
 To have a good approximation of the transmission-line behavior, the number N should be selected to 
keep the cutoff frequency of the LC filter, cω , high enough (e.g., close to bω ). Hence, the low-pass behavior of 
the LC portion does not mask the quasi-Gaussian behavior of the network. Using (11), we obtain 
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Fig. 5. An example of the topology of lumped-element filters derived from the complete Gaussian line ( 4=N ). 

III.2. Optimized Design Based on Complete Gaussian Line 
Lowering the frequency cω , the filter attenuation becomes steeper than for the Gaussian line within a certain 
frequency band, and it also flattens-out the group delay. Optimization of filters of various orders shows that the 
key factor for improving the filter performance is the proper choice of the attenuation introduced by a half-cell. 
To that purpose, we express the conductance in shunt branches as  

 
c

1
qZ

G = , (24) 

so that 

 
q

ZGZR c2
c == , (25) 

where q is a parameter. To find the optimal value of q that yields the most linear phase characteristic, we 
consider one half-cell in an infinite array of identical half-cells (Figure 6).  
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Fig. 6. A half-cell of the complete Gaussian line in an infinite array.  

 The half-cell consists of a series impedance, 
LR

LRZ
ω+

ω
=

j
j , and a parallel admittance, 

Cj
CGj

ω+
ω

=
G

Y . 

On the right, the cell is backed by the infinite array. Let ∞Z  be the input impedance looking into the array. The 
impedance looking into the cell is also ∞Z , because the network is infinite. Hence, 

 
1+

+=
∞

∞
∞ YZ

ZZZ . (26) 

Solving this equation results in 

 
Y

ZYZYZY
Z

2
)4( +±

=∞ . (27) 

The sign (+ or −) should be selected to obtain a positive real part of ∞Z . The current transfer function of the 
half-cell in Figure 6 is  

 
1

1
+

=
∞YZ

T . (28) 

This function can be represented as ϕ= jeAT , where A is the amplitude and ϕ  the phase of transfer function. 
We extract the linear frequency term from the phase, consider the residual phase, and vary the parameter q to 
obtain the flattest response. The optimum is numerically found to be 

 
6
1

=q , (29) 

when the first four derivatives of residual phase are zero at 0=ω . Now, the remaining elements of the half-cell 
are 

 
bω

=
RL , (30) 

 
bω

=
GC . (31)   

The corresponding cutoff frequency is 

 bb
c

c 222
ω=ω==ω q

R
Z

LC
. (32) 

Going back to the actual design, the number of half-cells is finally evaluated as 
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Equation (33) is the starting point for the design. Once we have selected an integer value for N, we have to 
recompute  
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 NN 3dBc 4.1 ω=ω  (34) 

to account for the discretization. From (12) and (32), we obtain the remaining equations needed for the design:  

 
N

ZL
c

c2
ω= , (35) 

 2
cZ
LC = . (36) 

 The lumped-element network obtained using this procedure can thereafter be further optimized, using a 
circuit simulator. By analyzing various lumped-element filters of the topology shown in Figure 5, it is found out 
that the optimum value of the conductance in the first and the last shunt branches is about c/1 Z . This choice 
provides a low reflection at very high frequencies.  

III.3. Approximation of Incomplete Gaussian Line 
In a similar way as in III.1, one can design a lumped-element filter (Figure 7) that approximates an incomplete 
Gaussian transmission line. We start from given cZ , 3dBω , and bω . Following the same procedure as before, 
we evaluate the total parameters of the incomplete Gaussian line as 
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 tbt = CG ω . (39) 

 As the second step, we find a lumped-element approximation to the incomplete Gaussian line. We 
assume that the ladder network approximation consists of N identical half-cells. The values of the elements 

are NLL /t= , NCC /t= , and NGG /t= , where tt
c

2
CLN ω

= . 

G

L

C

G

L

C

G

L

C

G

L

C

G

C

/2

/2

/2

/2
 

Fig. 7. An example of the topology of lumped-element filters derived from the incomplete Gaussian line 
( 4=N ). 

III.4. Optimized Design Based on Incomplete Gaussian Line 
To find the optimal value for the elements in the ladder network from III.3, we represent the conductance in 
shunt branches by (24). The impedance of the series branch of one half-cell (Figure 8) is LZ ω= j  and the 

admittance of the parallel branch is 
Cj

CGj
ω+

ω
=

G
Y . Following the same approach as before, we analyze one half-

cell in an infinite array of identical half-cells. The optimization yields the optimal value for the parameter q, 
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Fig. 8. A half-cell of the incomplete Gaussian line in an infinite array. 

 The final result of (32) is still valid, so that the number of half-cells for the actual design is given by  
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The remaining design procedure is the same as in Section III.2. 

IV. EXAMPLE 

We present design results for a lumped-element filter based on the incomplete Gaussian line (Figure 7). Requests 
are Ω= 50cZ , GHz2.43dB =f , and GHz 11c =f . Using equations (37-41), we calculate the number of half-
cells, N = 4  (filter of order 8), and the element values nH 435.1=L , pF 574.0=C , and Ω=  7.16/1 G . As 
mentioned in Section III.2, the resistances of the resistors in the first and the last shunt branches (denoted by 
G/2) should be cZ .  

A prototype of the filter was developed in the microstrip technique. The printed pattern and 
resistances are shown in Figure 9. The filter was made on a substrate of relative permittivity 2.33 and thickness 
0.254 mm (10 mil). The inductors were made as narrow microstrips (trace width 0.15 mm) and capacitors as 
wide microstrips (trace width 2.5 mm). High-frequency SMD resistors (size 0603) were used. The printed 
pattern and resistances were optimized to include the parasitic effects of traces, junctions, and SMD components. 
These effects significantly increase the resistances, make sharper the slope of the transfer function magnitude, 
and create parasitic passbands at very high frequencies. 

27 Ω 27 Ω

27 Ω75 Ω 75 Ω

 

Fig. 9. A microstrip implementation of the filter from Figure 7. 

Figure 10 shows the measured magnitude of the transmission coefficient compared with the results of 
computer simulation [7] and theoretical results for the classical Bessel filter of the eighth order. Figure 11 shows 
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the phase of the transmission coefficient with the linear term extracted and Figure 12 shows the magnitude of the 
reflection coefficient. Excellent agreement between the theoretical and experimental results is obtained, although 
the theoretical model does not include the effect of SMA connectors. The experiments have shown the filters 
fairly insensitive to production tolerances and easy for tuning. 

We do not compare our results with other data for low-reflection filters (e.g., [6]), as all other filters are 
of very low orders. Their transfer functions are inferior to those of the Bessel filters of order 3 or 4. In contrast to 
this, using the present approach, one can readily design and produce filters of virtually any order. 
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Fig. 10. Magnitude of the transmission coefficient. 
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Fig. 11. Residual phase of the transmission coefficient. 
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Fig. 12. Magnitude of the reflection coefficient. 
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V. CONCLUSION 

This paper proposes a new, low-reflection ladder network that consists of resistors, inductors, and capacitors. 
The network models fictitious transmission lines with Gaussian-like amplitude characteristics. A theoretical 
analysis of these lines is presented, based on which a procedure for synthesis of low-reflection resistive filters is 
developed. These filters have transmission coefficients similar to the classical Bessel filters, but in contrast to 
them have low reflection, both in the stopband and passband. The new filters are convenient for manufacturing 
because the range of element parameters is small. In a typical design example given in the paper, all inductances 
are equal, capacitances are in the range 2:1 (as opposed to more than 10:1 for the classical Bessel and Gaussian 
filters), and resistances are in the range 3:1. The filters have been found fairly insensitive to element tolerances 
and easy for tuning. A patent application has been filed for the basic design. Further investigation is planned to 
extend this work to bandpass filters. 
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