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Introduction to Statistics
• Statistics: The science of assembling, classifying, 

tabulating, and analyzing data or facts
– Descriptive statistics: the science of grouping, and 

presenting data to be easily understood or assimilated
– Inductive statistics or statistical inference: uses of data to 

draw conclusion about, or estimate parameters of, the 
environment from which the data came

• Branches of Statistics (studied in most universities)
1. Sampling Theory
2. Estimation Theory
3. Hypothesis Testing
4. Curve Fitting and Regression 
5. Analysis of Variance and Experimental Design
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The Art and Science of Sampling
• A few examples

1. Randomly selecting n out of M vendors in Atlanta for 
evaluation to award a construction job

2. Randomly polling Q households for TV rating
3. Randomly selecting parts for error measurement
4. Opinion polls: done a lot in election seasons
5. Sending pilot signals to probe a wireless connection

• Questions 
– How many to sample? What’s the population like?
– What can be said about the sampling results?
– How to use probability theory to help?
– How to use computer simulation in sampling?
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(Empirical) Sample Mean & Variance
• Population: collection of data being studied

– N: Size of the population (typically a large size)
– (Random) Sample: n is the size of the sample set:

• Statistic: function of samples (for statistical inference)
1. Sample Mean (not the mean parameter):

2. Sample Variance (a r. v., not the variance parameter):
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Important Statistics & Expectations (I)
1. Expectation of the Sample Mean:  

2. Expectation of the Sample Variance (known mean/variance):
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Important Statistics & Expectations (II)

3. Expectation of Sample Variance (unknown parameters):

4. Unbiased Sample Variance:
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Other Properties on Statistics
5. Variance of Sample Variance (unknown parameters):

• Sample mean and sample variance are correlated random 
variables useful for statistical inference
– their joint density can be established (not in ECE3075)

• The same discussion can be extended to multivariate cases 
(studies have been completed for Gaussian cases)

• Discussion on population size N (for your reading)
– Sampling with or without replacement [Eq. (4-5) vs. Eq. (4-4)]

• Large Sample Theory (n > 30, depending on individual cases)
• Textbook Illustrations: Exercises 4-2.1, 4-2.2 and 4-3.1, 4-3.2
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Sampling Distributions (I)
• For many applications, it is important to obtain the 

distribution of a sample statistic. We need to watch for 
assumptions about the random samples before we work 
out sample distributions.
– realize what’s known and unknown

• Example 1: Normalized Sample Mean
– independent Gaussian samples with known variance

– note: Z can not be defined if we don’t know the parameters

2
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Sampling Distributions (II)
• Example 2: Normalized Sample Mean

– independent Gaussian samples with unknown variance

• The pdf of T (assuming v=n-1) is of the form

– for large value of v, we have an approximate Gaussian

2 2
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Confidence Intervals
• Sample Mean : a point estimate related to sample size

– How about an interval estimate? How to choose n? 

• q-percent confidence interval: e.g. quartile, median
– Example: sample mean for Gaussian samples, known variance
– For the sample mean:

• Confidence interval for other statistics can also be 
established if the distribution of the point estimate of 
interest can be evaluated (e.g. t-distribution).

• Illustrations: Tables 4-1, 4-2, and Exercises 4-4.1, 4-4.2

ˆ( / / ) / 100P X k n X X k n qσ σ− < < + =

[ / ,  / ]X k n X k nσ σ− +
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Hypothesis Testing
• Testing Statistical Hypothesis

– decisions in accepting an assumed distribution from test data
– what is the level of confidence in accepting right decisions?
– what is the penalty, if any, for making wrong decisions?

• Formulating a statistical test
– one-sided test: mean = 1000 vs. mean > 1000
– two-sided test: mean = 1000 vs. mean > 1000 or <1000

• Confidence interval and confidence level in testing
– larger level of significance corresponds to a more severe test

• Textbook Illustrations: Examples on pp.174-176
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One- and Two-Sided Tests: Summary
One-sided (one-tailed) Test

• Large-sample test statistic:

• Small-sample test statistic:

• Region of Rejection
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Two-sided (two-tailed) Test

• Large-sample test statistic:

• Small-sample test statistic:

• Region of Rejection

0 0 1 1 0:   vs. :  H X H Xµ µ µ= = ≠

0 2( ) /( / )z x S nµ≈ −

0 2( ) /( / )t x S nµ= −

/ 2 / 2

/ 2 / 2

or  
and   or  
z z z z

t t t t
α α

α α

> < −

> < −

/ 2 /2( )= / 2 or P( )= / 2 P z z t tα αα α> >



13 Center of Signal and Image Processing
Georgia Institute of Technology

ECE3075 Summer 2004

One-Sided Test: An Example
• Testing of known Gaussian mean (known variance)

• Higher confidence level implies large acceptance region
– a higher level of significance       implies a more severe test

• T-test: for smaller sample sizes (known variance)

If ( ) 0.99 2.33,  we reject the hypothesis 300 with 99% confidence
and if ( ) 0.995 2.575,  we accept the hypothesis 300 with 99.5% confidence

c c

c c

C z z X
C z z X
= ⇒ = − =

= ⇒ = − =

Test statistic [ ] /[ / ] [290 300] /[40 / 100] 2.5z x X nσ= − = − = −

Accept 300 if  with confidence ( ) ( ) 1 ( ) or significance 1- ( )
c

c c c cz
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∞
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If ( ) 0.99 (8) 2.896,  we accept the hypothesis 300 with 99% confidencec cC t t X= ⇒ = − =

α
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Two-Sided Test: An Example
• Testing of known Gaussian mean (known variance)

• T-test: for smaller sample sizes (known variance)

– small sample test is not as severe as a large sample one

• Critical Value:      and     are critical values of the tests
• Textbook Illustrations: Exercises 4-5.1 and 4-5.2

If ( ) 0.95 1.96 (Table 4-1),  we reject the hypothesis 10 with 95% confidencec cC z z X= ⇒ = =

Test statistic [ ] /[ / ] [10.3 10] /[1.2 / 100] 2.5z x X nσ= − = − =
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If ( ) 0.95 (8) 2.306 (Table 4-2),  we accept the hypothesis 10 with 95% confidencec cC t t X= ⇒ = =

cz ct
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Statistical Hypothesis Testing

• In essence, a hypothesis test partitions the entire 
observation space into two disjointed sets, CC and D

• If an observation X lies in the region CC, we reject H0; if 
X is in D, we accept H0. C is called the critical region, 
often defined by critical values as discussed earlier

• Type I error (also called false rejection error) of a test:

• Type II error (also called false alarm error) of a test:

• Recall the modem example in Chapter 1 and HW#1

1 0P( ) P( | )  level of significanceE X C Hα = = ∈ ⇒

2 1 1P( ) P( | ) 1 P( | ) 1E X D H X C Hβ γ= = ∈ = − ∈ = −
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Densities of One-Sided Test Statistic
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Evaluating Verification (I)
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∞
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Evaluating Verification (II): ROC 
(Receiver Operating Characteristic) Curve

False Alarm Error (Type II)

False 
Rejection 
Error (Type I)

100% 

100% 

0% 

A Not-so-good 
System

A Better System

Equal Error 
Performance

Another important application is biometric authentication.
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Curve Fitting
• Consider fitting y=r(x) to a set of pairs of random 

samples:
– we will have curve fitting errors:
– r(.) is a regression function
– goodness of fit: minimizing least squared errors

• Polynomial fitting (MATLAB example):
• Linear fitting: y=a+bx
• Spline fitting 

– local and global optimization
– various optimization criteria

• Illustrations: Table 4-3, Exercises 4-6.1, 4-6.2
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Linear Regression
• Least Squares: Minimizing Sum of Squared Error

• We obtain the following matrix normal equation

• Solving for intercept a and slope b : y=polyfit(y,x,n)

• Extend to more than one regressor (econometrics)
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Correlation between Two Sets of Data
• Linear correlation coefficient (Pearson’s r)

• Pearson’s r approaches Gaussian for large n
– significance of the value of r: small r is often meaningless 

unless the sample size n is large, and f(x, y) is known
– large r implies a tighter coupling between X and Y

• Textbook Illustrations: bit error rate (BER) example
– scatter plot Figure 4-7 (wind velocity versus BER)
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An Intuitive Summary
• Simplifying Notations

• We obtain the following solutions

• Can you extend the above to multiple regression?

ˆ ˆˆ ˆˆ,  and XY XY

XX XX YY
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Other Topics of Interest

• We did not have time to cover the following:
1. Comparing two samples means (mean difference): 

for sampling distributions, confidence interval  
and hypothesis testing

2. Multiple Regression (macroeconomics)
3. Autoregression: Time Series (econometrics)
4. Parameter Estimation
5. Decision Theory

• Basic skills learned here can be applied to 
– The above and many other problems
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Summary

• Today’s Class
– Elements of Statistics

• Reading Assignments
– Cooper & McGillem, Chapter 4

• Class Next Week
– Quiz #1 on 6/8/20 (Chapters 1-3)
– Finishing Chapter 4


