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Introduction to Statistics

Statistics: The science of assembling, classifying,
tabulating, and analyzing data or facts

—  Descriptive statistics: the science of grouping, and
presenting data to be easily understood or assimilated

— Inductive statistics or statistical inference: uses of data to
draw conclusion about, or estimate parameters of, the
environment from which the data came

Branches of Statistics (studied in most universities)

1. Sampling Theory

2. Estimation Theory

3. Hypothesis Testing

4. Curve Fitting and Regression

5. Analysis of Variance and Experimental Design
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The Art and Science of Sampling

A few examples

1.

Al

Randomly selecting n out of M vendors in Atlanta for
evaluation to award a construction job

Randomly polling O households for TV rating
Randomly selecting parts for error measurement
Opinion polls: done a lot 1n election seasons
Sending pilot signals to probe a wireless connection

*  Questions

How many to sample? What’s the population like?
What can be said about the sampling results?

How to use probability theory to help?

How to use computer simulation in sampling?
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(Empirical) Sample Mean & Variance

* Population: collection of data being studied
—  N: Size of the population (typically a large size)
— (Random) Sample: n 1s the size of the sample set:
{x,,x,,...,x } with x;'s independent samples from the set
«  Statistic: function of samples (for statistical inference)

1. Sample Mean (not the mean parameter):

Zx or X= ZX (X, 1sanyr. v. with a pdf f(x))

2. Sample Variance (a r. v., not the variance parameter):

5 =13 (X, - X7, 52 =LY (X, - X, or §2 =%Z<Xi—)?>2
n - n - n—1,;,5
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Important Statistics & Expectations (I)

1. Expectation of the Sample Mean:

E[X] ZE[X ZX X (unbiased statistic of X)

2. Expectatlon of the Sample Variance (known mean/variance):

E{ST}= E[—Z(X —X)’] ——{ZE(X) 2ZE<X * X)X’}

=;{nE<)?2>—m‘f2>—f[‘2 (X)]=0

n

Note: E[X, X 1= E[X*] (i =), and E[X, X, ]=(E[X])*=X" (i # j)
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Importapt Statistics & Expectations (ll)

3. Expectation of Sample Variance (unknown parameters)

Biased statistic: E{Szz}:E[lZn:(Xl.—)L() 1= E{—Z X ——ZX
n o
=1{ﬁE[<Xi>2]—ziE<X,-*%Xﬂ%ZE[(ZX,)(ZX»]}

—{ZE(X)] 2— ZE[(X) ——EZZXX +— E[(ZX)(ZX )1}

i=j j=I
=—{nE(Xz)—E(Xz)—(n—l)[E(X)]z}=—{E[(X—)_()2]} n—_102
n n n
4. Unbiased Sample Variance: |E(S2)= E(S )=0"’
n—
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5.
Var[S2]= E{[S? - E(S)[} =

Other Properties on Statistics

Variance of Sample Variance (unknown parameters):
(X -X)'1-0* _u,-o"*
n n

Sample mean and sample variance are correlated random
variables useful for statistical inference

— their joint density can be established (not in ECE3075)
The same discussion can be extended to multivariate cases
(studies have been completed for Gaussian cases)
Discussion on population size N (for your reading)

—  Sampling with or without replacement [Eq. (4-5) vs. Eq. (4-4)]
Large Sample Theory (n > 30, depending on individual cases)
Textbook Illustrations: Exercises 4-2.1, 4-2.2 and 4-3.1, 4-3.2
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Sampling Distributions ()

For many applications, it 1s important to obtain the
distribution of a sample statistic. We need to watch for
assumptions about the random samples before we work
out sample distributions.

— realize what’s known and unknown
Example 1: Normalized Sample Mean

— 1ndependent Gaussian samples with known variance

A n 2
. . . < : o
X =— E X, 1s Gaussian with mean X and variance —

n o n

X/ T 1s Gaussian with mean O and variance 1 (standardized r. v.)
o

— note: Z can not be defined 1f we don’t know the parameters
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Sampling Distributions (ll)

 Example 2: Normalized Sample Mean

— 1ndependent Gaussian samples with unknown variance

T'= ~X A A has a Student's t-distribution with n-1 degrees of freedom

S,/\n S, /\n-1

e ThepdfofT (assuming v=n-1) 1s of the form

1 ()= \/11‘;1() ) (1 + - )__ (Figure 4-2, v=1, I'(v) is the Gamma function)

—  for large value of v, we have an approximate Gaussian

[w+1)=v[ (), T(k+1)=k! (integer k), [(2) =T(1) =1, T(1/2) =7
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 Confidence Intervals

Sample Mean : a point estimate related to sample size

— How about an interval estimate? How to choose n?

g-percent confidence interval: e.g. quartile, median

— Example: sample mean for Gaussian samples, known variance
— For the sample mean:|[.X —ko/\n, X +ko//n]
P(X —ko/n<X <X +ko/n)=q/100
Confidence interval for other statistics can also be
established if the distribution of the point estimate of
interest can be evaluated (e.g. t-distribution).

[llustrations: Tables 4-1, 4-2, and Exercises 4-4.1, 4-4.2
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- Hypothesis Testing

Testing Statistical Hypothesis
— decisions 1n accepting an assumed distribution from test data
— what 1s the level of confidence 1n accepting right decisions?
— what 1s the penalty, 1f any, for making wrong decisions?

Formulating a statistical test

— one-sided test: mean = 1000 vs. mean > 1000

— two-sided test: mean = 1000 vs. mean > 1000 or <1000

Confidence interval and confidence level 1n testing

— larger level of significance corresponds to a more severe test

Textbook Illustrations: Examples on pp.174-176
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One- and Two-Sided Tests: Summary

One-sided (one-tailed) Test
H,: )_(:,uo VS.HI:)?:,ul>yO
Large-sample test statistic:
2% (X = 1) (S, /\In)
Small-sample test statistic:
t = (X - 14,)/(S, //n)
Region of Rejection
z>z (z<-z ))andt>t (1<-t))

P(z>z ))=a orP(t>t))=a

Two-sided (two-tailed) Test
Hy: X=p,vs.H: X=pu #u,
Large-sample test statistic:
2% (X — 1) (S, /\In)
Small-sample test statistic:
£ = (X~ ) (S, /\[n)
 Region of Rejection
A >Za/2 OI'Z<—ZOC/2

and¢t>¢ , ort<-t ,

P(z>z ,=al/2or P>t ,)=al2
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One-Sided Test: An Example

* Testing of known Gaussian mean (known variance)
Test statistic z = [¥ — X /[0 //n]=[290-300]/[40/~/100] = -2.5

Accept X =300 if z > z_ with confidence C(z,) = j - f(2)dz =1-®(z,) or significance a =1-C(z,)

If C(z,) =0.99 = z_=-2.33, we reject the hypothesis X =300 with 99% confidence
and if C(z,) = 0.995=> z_ =-2.575, we accept the hypothesis X =300 with 99.5% confidence

« Higher confidence level implies large acceptance region

— a higher level of significance ¢ 1mplies a more severe test

o T-test: for smaller sample sizes (known variance)

Test statistic # =[x — X ]/[§, /~/n]=[290-300]/[40/~/9]=—0.75

If C(¢,)=0.99 =t (8) =—2.896, we accept the hypothesis X =300 with 99% confidence

Georgia Institute of Technology
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Two-Sided Test: An Example

T'esting of known Gaussian mean (known variance)
Test statistic z =[x - X ]/[o/~/n]=[10.3-10]/[1.2//100] = 2.5

Accept X =10 if -z, <z <z, with confidence C(z,) = f f(2)dz=1-2d(z,) or significance S(z,)=1-C(z,)

If C(z,)=0.95= z, =1.96 (Table 4-1), we reject the hypothesis X =10 with 95% confidence

T-test: for smaller sample sizes (known variance)
Test statistic 7 =[x — X /[, /~/n]=[10.3-10]/[1.2/~+/9]=0.75

If C(¢,) =0.95=>¢,(8) =2.306 (Table 4-2), we accept the hypothesis X =10 with 95% confidence

— small sample test 1s not as severe as a large sample one
Critical Value: z, and ¢, are critical values of the tests
Textbook Illustrations: Exercises 4-5.1 and 4-5.2
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Statistical Hypothesis Testing

* In essence, a hypothesis test partitions the entire
observation space into two disjointed sets, C and D

 If an observation X lies 1n the region C, we reject HO; 1f
X1s 1n D, we accept H0. C 1s called the critical region,
often defined by critical values as discussed earlier

* Type I error (also called false rejection error) of a test:
a=P(E)=P(X eC|H,)= level of significance

* Type Il error (also called false alarm error) of a test:
B=P(E,)=P(XeD|H)=1-P(X eC|H)=1-y

» Recall the modem example in Chapter 1 and HW#1
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Densities of One-Sided Test Statistic

014~
D121 g(T | HO)
o.1F Threshold PETXY % HO)
T
=0.08 Type | Error
8 a=| g(T|H)x
% 0.08 Type Il Error
p=| gT|H, )dx
0.04 P(TEX) S H1 ) g(TI ]_Il) '[D 1
002
Region | . Region Il
0
—a0 —25 =20 —15 —10 -5 0 o 10 15
T(X)
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Evaluating Verification (l)

Total Error

a+ f
\.~

\/‘
.
-

- *

) a={ g(T|H,dx
B=[ e(T|H,)dx

Type Il Error

Type | Error

Equal Error

Threshold
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Evaluating Verification (llI): ROC
(Receiver Operating Characteristic) Curve

100% R
. A Not-so-good .
False 1 System ~"Equal Error
Rejection
Performance

Error (TypeI)

LA Bef'ter System

o
° N e,

0% 100%

False Alarm Error (Type II)

Bm) Another important application is biometric authentication.

18 ECE3075 Summer 2004 Center of Signal and Image Processing C SI P

Georgia Institute of Technology




Curve Fitting

Consider fitting y=r(x) to a set of pairs of random

samples:  {(x, 1,06, 2)-»(%,:,)}
— we will have curve fitting errors: ), =r(x,)+d, (cf. Figure 44)

— r(.) 1s a regression function
2
— goodness of fit: minimizing least squared errors = Zd

Polynomial fitting (MATLAB example): »x) - Zak
Linear fitting: y=a+bx
Spline fitting

— local and global optimization
— various optimization criteria

[llustrations: Table 4-3, Exercises 4-6.1, 4-6.2
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- Linear Regression

Least Squares MlIllIIllZlIlg Sum of Squared Error
D = Zdz Z[y —(a+bx,)]’ = minimum
We obtain the followmg matrix normal equation

Solving for intercept a and slope b : y=polyfit(y,x,n)

G0 -G -y

p=—= a=

=Y -

nz_:xi _(in)

C 2 N2
ani - (Z X;)
=1 =1

n

bX

Extend to more than one regressor (econometrics)
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Correlation between Two Sets of Data

 Linear correlation coefticient (Pearson’s r)

i (x, %), - 7)

. . _ 1
r= withx =—)> x,y=—)> y
n -

\/Z (x, - %) * JZ (5, - )’

* Pearson’s r approaches Gaussian for large n

— significance of the value of : small r 1s often meaningless
unless the sample size n 1s large, and f(x, y) is known

— large r implies a tighter coupling between X and Y

* Textbook Illustrations: bit error rate (BER) example
— scatter plot Figure 4-7 (wind velocity versus BER)
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'An Intuitive Summary

 Simplifying Notations
8 = 2 5,7, =12 X)X vV m,

SSyy = Zn: xz'2 _(Zn: 'xi)2 /n and S§S,, = Zn: yi2 _(Zn: yz')2 /'n
=1 =1 =1 (=1

We obtain the following solutions

SS.. . 2 sz SS..

b= ,&:I}—I; and r =

SS JSS #SS,,

 (Can you extend the above to multiple regression?
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Other Topics of Interest

 We did not have time to cover the following:

1. Comparing two samples means (mean difference):
for sampling distributions, confidence interval
and hypothesis testing

Multiple Regression (macroeconomics)
Autoregression: Time Series (econometrics)
Parameter Estimation

Decision Theory

asic skills learned here can be applied to
— The above and many other problems

T o v
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\ Summary

* Today’s Class

— Elements of Statistics

* Reading Assignments
— Cooper & McGillem, Chapter 4

 Class Next Week

— Quiz #1 on 6/8/20 (Chapters 1-3)
— Finishing Chapter 4
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